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Kurzfassung

XSPARQL ist eine Sprache zur Transformation von Daten zwischen XML und
RDF. XML ist ein weit verbreitetes Format zum Austausch von Daten. RDF ist
ein Datenformat basierend auf gerichteten Graphen, das primär zur Reprä-
sentation von Daten im Semantic Web verwendet wird. XSPARQL kombiniert
die Stärken der beiden zugehörigen Anfragesprachen XQuery für XML und
SPARQL für RDF. In dieser Diplomarbeit präsentieren wir zwei Verbesserun-
gen der XSPARQL-Sprache, die Constructed Dataset und Dataset Scoping
genannt werden, die Xdep Dependent Join Optimierung sowie eine neue Im-
plementierung von XSPARQL. Constructed Dataset erlaubt das Erstellen und
Abfragen temporärer RDF-Graphen. Durch Dataset Scoping können uner-
wartete Ergebnisse, die beim Auswerten einer komplexen XSPARQL-Anfrage
mit verschachtelten SPARQL-Anfrageteilen auftreten können, vermieden wer-
den. Die XSPARQL-Implementierung schreibt eine XSPARQL-Anfrage in eine
XQuery-Anfrage um, die, zur Verarbeitung von RDF Daten, eingeschobene
Aufrufe einer SPARQL-Engine enthält. Die resultierende Anfrage wird dann
von einem XQuery-Prozessor und einer SPARQL-Engine gemeinsam ausge-
wertet. Die Dependent Join Optimierung Xdep zielt auf eine Reduktion der
Auswertungsdauer für Anfragen ab, die eingebettete SPARQL-Anfrageteile
wiederholt auswerten müssen. Xdep minimiert die Anzahl von Interaktionen
zwischen dem XQuery-Prozessor und der SPARQL-Engine, indem ähnliche
SPARQL-Anfragen zusammengefasst und das Auswählen der relevanten Da-
ten dem XQuery-Prozessor überlassen wird. Anhand einer adaptierten Version
des XQuery-Benchmarks XMark haben wir eine experimentelle Evaluation un-
seres Ansatzes durchgeführt. Wir werden zeigen, dass die Xdep-Optimierung
die Auswertungsdauer von allen kompatiblen Anfragen reduzieren konnte.
Durch die Optimierung konnten wir bestimmte Anfragen um zwei Größen-
ordnungen schneller auswerten als in der unoptimierten Version.





Abstract

XSPARQL is a language for transforming data between XML and RDF. XML
is a widely used format for data exchange. RDF is a data format based on
directed graphs, primarily used to represent Semantic Web data. XSPARQL is
built by combining the strengths of the two corresponding query languages
XQuery for XML, and SPARQL for RDF. In this thesis we present two XSPARQL
enhancements called Constructed Dataset and Dataset Scoping, the Xdep

dependent join optimisation, and a new XSPARQL implementation. Con-
structed Dataset allows to create and query intermediary RDF graphs. The
Dataset Scoping enhancement provides an optional fix for unintended results
which may occur when evaluating complex XSPARQL queries containing
nested SPARQL query parts. The XSPARQL implementation works by first
rewriting an XSPARQL query to XQuery expressions containing interleaved
calls to a SPARQL engine for processing RDF data. The resulting query is
then evaluated by standard XQuery and SPARQL engines. The dependent join
optimisation Xdep is designed to reduce query evaluation time for queries
demanding repeated evaluation of embedded SPARQL query parts. Xdep

minimises the number of interactions between the XQuery and SPARQL en-
gines by bundling similar queries and let the XQuery engine select relevant
data on its own. We did an experimental evaluation of our approach using an
adapted version of the XQuery benchmark suite XMark. We will show that the
Xdep optimisation reduces the evaluation time of all compatible benchmark
queries. Using this optimisation we could evaluate certain XSPARQL queries
by two orders of magnitude faster than with unoptimised XSPARQL.
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Chapter 1

Introduction

Nowadays lots of data are stored or transferred in the XML [Bray et al., 2008]
format. The Semantic Web uses another format, the Resource Description
Framework (RDF) [Klyne and Carroll, 2004]. As the use of both, XML and
RDF, increases, the need for transforming data between the two formats
grows similarly. Although the default serialisation syntax for RDF is an XML
language, transforming data remains a complicated task because of funda-
mental differences between the two data formats and syntactical ambiguities
of RDF/XML.

XSPARQL [Polleres et al., 2009] integrates the two query languages for
XML and RDF, XQuery and SPARQL, in order to remedy theses drawbacks.
XSPARQL provides an intuitive and concise syntax to simplify data trans-
formation and therefore brings the worlds of XML and RDF closer together.
Nevertheless XSPARQL shows problems when evaluating complex queries:
Query evaluation results can be intuitively wrong and query evaluation times
can grow fast with increasing data source size.

The main contributions of this thesis are the following:

• A new semantics for the XSPARQL transformation language;

• The new features Constructed Dataset and Dataset Scoping to make
query authoring easier;

• A new implementation of the XSPARQL rewriter used in a similar
architecture as the former implementation;

• The dependent join optimisation Xdep to improve query evaluation
time of complex XSPARQL queries;

• A practical performance evaluation comparing XQuery evaluation times
with XSPARQL evaluation times and unoptimised XSPARQL with Xdep

optimised XSPARQL.



1. Introduction

The goal of the present thesis was to further develop XSPARQL and to build a
stable and flexible implementation of the language. To achieve this goal stand-
ard compiler construction techniques, such as lexer and parser generators, are
used. Two extensions to XSPARQL are introduced. The First, Dataset Scoping,
fixes a known issue of nested queries returning unexpected results when
certain variables are bound to blank nodes. The second extension, Constructed
Datasets, facilitates new use cases by allowing one to create intermediary RDF
graphs and to query these graphs in the same query. Furthermore we will
introduce an approach for optimising XSPARQL query evaluation. Eventually
the effectiveness of our optimisations is demonstrated in an experimental
evaluation.

The following sections present the big picture of this thesis. We will give
an overview of the XML and RDF data formats, their corresponding query
languages and the XSPARQL transformation language. Furthermore we will
discuss issues of the current XSPARQL specification which we will address as
the main part of this thesis.

1.1 Data on the Web

The most important format to transfer data over the Internet and otherXML
networks of the last years is surely XML. One example use of XML are SOAP
web services [Mitra and Lafon, 2007], where all parts of the communication
depend heavily on XML. XHTML [Pemberton, 2002], another example, is a
new definition of the Hypertext Markup Language (HTML) in XML terms.
The Extensible Markup Language (XML) [Bray et al., 2008] is a specification
language which enables us to create domain specific markup languages. XML
implements the semi-structured data model [Abiteboul, 1997, Buneman, 1997].
A semi-structured data format such as XML can be used with or without a
schema. It is therefore a flexible data model capable of representing loosely
structured documents (e. g. XHTML web pages) and highly structured data
(e. g. export of data of relational databases).

Example 1.1. Listing 1.1 shows a simple XML file describing three persons
and their relations to each other [Polleres et al., 2009].

XML allows only one single root element. In Listing 1.1 the root element is
relations. The three child elements represent three persons. The names of
the individuals are given as attributes. The order of elements in a document
(document order) is relevant, but not that of attributes for an element. Persons
are alphabetically ordered in our example. Each person can know another
person (in this example such a relation is unidirectional), represented as a
child element containing the name of that second person as text node.
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1 <relations>
2 <person name="Alice">
3 <knows>Bob</knows>
4 <knows>Charles</knows>
5 </person>
6 <person name="Bob">
7 <knows>Charles</knows>
8 </person>
9 <person name="Charles"/>

10 </relations>

Listing 1.1: XML example data

1 <rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:rdf="http://www.
w3.org/1999/02/22-rdf-syntax-ns#">

2 <foaf:Person rdf:about="alice/me">
3 <foaf:knows>
4 <foaf:Person foaf:name="Charles"/>
5 </foaf:knows>
6 </foaf:Person>
7 </rdf:RDF>

Listing 1.2: Example for XML namespaces

An important concept used in XML are XML Namespaces [Layman et al., XML namespaces

1999]. They allow XML to uniquely identify elements and therefore to distin-
guish for example between elements for a drawer being part of a desk and
a drawer being a person who draws (signs) a cheque, by using a globally
unique identifier. In XML Uniform Resource Identifiers (URI) [Berners-Lee et al.,
1998] or Internationalized Resource Identifiers (IRI) [Duerst and Signard, 2005]
are used as such identifiers. An abbreviated form of a URI is a qualified
name (QName). Qualified names are built by appending a colon and the
local part after a namespace prefix. A namespace prefix is declared in any
enclosing element (like the root element). When defining an element, the URI
http://xmlns.com/foaf/0.1/name can be written as the QName foaf:name,
given that the namespace http://xmlns.com/foaf/0.1/ was assigned to the
prefix foaf earlier.

The root element rdf of the XML document in Listing 1.2 declares two
different namespaces: The RDF namespace http://www.w3.org/1999/02/

22-rdf-syntax-ns# is bound to the rdf prefix, while the FOAF namespace
http://xmlns.com/foaf/0.1/ is bound to the foaf prefix. Thus every ele-
ment starting with the rdf prefix is associated with the RDF namespace,
likewise the foaf prefix associates element and attribute names with the
FOAF namespace.
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relations

person

name knows knows

person

name knows

person

name

Alice Bob CharlesBob Charles Charles

Figure 1.1: Example XML data

XML is called semistructured, meaning a schema is optional and unlikeSchema language

relational database management systems, a schema is not needed to access
or process XML data. The W3C Recommendation XML Schema [Walmsley
and Fallside, 2004] provides a complex type system together with key and
cardinality constraints and thus gives fine grained control over valid XML
document instances. XML Schema contains 44 pre-defined simple types for
numbers, strings, dates, durations and more as well as the capability to create
user defined types.

Over time multiple data models have been created for XML. They hideData models

syntactic issues like encoding or entity declarations from XML processing
applications and provide a formal way to look at XML documents. The XML
Infoset [Cowan and Tobin, 2004] was the first XML data model providing
an abstract view of an XML document as a tree. The XQuery data model
(XDM) [Fernández et al., 2007] extends the Infoset and it is the data model
that XQuery (see Section 2.3) shares with XPath 2.0 [Berglund et al., 2007] and
XSLT 2.0 [Kay, 2007]. It includes support for sequences of nodes (as the result
of an XPath expression), XML Schema typing and ordered heterogeneous
sequences. XQuery (as well as XPath and XSLT) takes XML documents under
XDM as input and returns a value in XDM again.

When a XML document is interpreted under such a data model it can be
represented as a tree.

Example 1.2. See Figure 1.1 for the tree representation of the XML document
in Listing 1.1. Elements are represented as rectangles, attributes as circles
and text without borders.

On the other hand more and more services offer access to data via theRDF

Semantic Web’s Resource Description Framework (RDF) [Manola and Miller,
2004]. More and more organisations make data available in RDF as Linked
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Data [Berners-Lee, 2006, Linked Data] using RDF. RDF is a way to describe
resources, which can be documents, but also real world objects or abstract
concepts; basically anything which can be labelled with an URI. RDF describes
these resources and the relations between them by a data model based on
directed graphs, i. e., resources are represented as nodes with directed links,
called predicates, pointing from a source, called subject, to a target, called
object.

1.2 Querying XML and RDF Data

XQuery [Boag et al., 2007] is the W3C Recommendation for an XML query
language. It is specified together with XSLT 2.0 and XPath 2.0 [Boag et al., 2007,
Melton and Muralidhar, 2007, Kay, 2007, Fernández et al., 2007, Malhotra
et al., 2007, Draper et al., 2007, Fernández et al., 2007]. XQuery can be
used to query XML documents or XML databases and extract, transform and
aggregate XML data.

According to the introduction of the XQuery specification [Boag et al.,
2007], there are two important design aspects: XQuery is a strongly typed
and functional language. XQuery is a functional language, which means that
the basic constructs are expressions (in contrast to statements like in imperative
or object oriented languages). An XQuery query is therefore a list of possibly
nested expressions. XQuery is a strongly-typed language, that operates on the
XPath/XQuery data model (XDM) [Fernández et al., 2007] which uses XML
Schema for data types. With optional static typing the types of expressions
are determined and checked after parsing but before query evaluation, which
allows static error detection. During query evaluation, when not only the
query, but also the data is known, dynamic type checking is performed. As long
as only standard extensions are used, XQuery is free of side effects which
makes development of optimisations easier. An important aspect that XQuery
shares with XSLT 2.0 and XPath 2.0 is a library of built-in functions [Malhotra
et al., 2007] for manipulating XML and text content. The standard data type
in XQuery is the sequence: Most functions take sequences as arguments, and
eventually return sequences. Single values are interpreted as sequences of
the length one.

The SPARQL query language is designed for querying different RDF data SPARQL
sources and is, like XQuery, also a W3C Recommendation [Prud’hommeaux
and Seaborne, 2008]. It features a powerful graph pattern matching facility.
Graph patterns are a way to match and extract parts of RDF graphs. SPARQL
can return the result in several formats: In a row based format such as
relational database systems, as another RDF graph again or as a binary
“yes/no” answer. Similar to query languages for other data formats SPARQL
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provides slicing and ordering of results.
While being useful for querying RDF data, SPARQL has some limitationsLimitations of SPARQL

making extensions or complex queries hard. First of all, the built-in functions
are available for FILTER expressions only, and there exists no mechanism
to define other functions. Whenever named graphs are used, they have
to be declared statically. This is a problem if a graph’s IRI is stored in
the RDF graph itself. In that case firstly the IRI of this graph has to be
obtained and after that the “real” query can be built manually. Unlike SQL
it is not possible to formulate subqueries or aggregates in SPARQL. Such
features would have to be implemented in whatever context SPARQL is called
(e. g. some generic programming or scripting language). Although the
upcoming SPARQL 1.1 [Harris and Seaborne, 2010] is addressing subqueries
and aggregates.

1.3 Transforming Data between XML and RDF

It is important for the use cases of data integration and for interoperability of
tools and whole systems, to have a reliable way to transform data between or
within different data formats. To make such transformations manageable and
maintainable, it is desirable to use a tool which is not only able to perform this
transformation in a robust and reliable manner, but which makes adaptions
of the concrete transformation process easily achievable. In this section we
discuss ways of transforming data between XML and RDF.

One way to accomplish the tasks of data integration is to use a generic
programming or scripting language like Java, but for most transformations
this approach is more complicated, longer and hence less maintainable than
a tailored approach provided by query languages, some of which we discuss
briefly in the following.

XML to XML The standard way of transforming data from one XML format
to another XML format is to use XSLT [Kay, 2007] or XQuery [Boag et al., 2007]
depending on the specific needs. XSLT (XSL Transformations) is the older
language of the two, intended exactly for this use case: transforming XML
data to XML (other output formats such as text or binary are also possible).
XSL stands for The Extensible Stylesheet Language and consists of XSLT, XPath
(also used in XQuery) and XSL Formatting Objects (XSL-FO). XQuery is slightly
more declarative than the template based XSLT language but serves the same
purpose. We will describe XQuery in more detail in Section 2.3.

RDF to RDF SPARQL can be used for converting RDF data again to RDF.
But SPARQL provides no functions to manipulate text or numbers during that

6
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process. The simple syntax makes complex queries impossible to express.

XML to RDF Since there is also an XML serialisation of RDF called RD-
F/XML, it is possible to use XSLT or XQuery to transform data from some
XML format to RDF/XML. Nevertheless this approach is tedious because RDF
is used the represent graphs and XML is limited to trees.

RDF to XML One way to go would be to use XSLT or XQuery again. Appar-
ently that is only possible if the data is available in RDF/XML. If the data is
given in some other RDF serialisation format, it first has to be transformed to
RDF/XML. The biggest problem with RDF/XML as data source is the great
syntactical variety one RDF graph can be represented in using XML. This
variety makes it hard to come up with a versatile and working solution. Even
if such a solution is found it is all but concise and poorly maintainable.

An alternative would be to first create a SPARQL query and then apply
a XSLT or XQuery transformation on the SPARQLXML result set. Using this
approach one might have to create several SPARQL queries and combine the
results of all those queries in a single XQuery query. This approach is error
prone, requires a lot of testing and distributes the transformation process
over several queries, thus reducing maintainability of the data transformation
process.

Akhtar et al. [2007] give a more detailed discussion of the problems of
these transformations. In summary transforming data between XML and
RDF has serious issues. With XSPARQL we provide an integrated query and
transformation language, capable of simplifying these transformations.

1.4 The XSPARQL Transformation Language

The XSPARQL transformation language combines the strengths of XQuery
and SPARQL to make data transformation between XML and RDF simpler. By
merging these two query languages, XSPARQL can be seen as feature enabler
for both base languages: It brings SPARQL’s graph pattern matching facility to
XQuery, thus allowing to access and process RDF data on a data model level,
i. e., independent of the concrete RDF serialisation syntax. XSPARQL brings the
large XQuery function library to SPARQL, making up for the fact that SPARQL
lacks even basic functionality such as simple string manipulation or value
aggregation. Furthermore it allows one to formulate subqueries in a syntax
very similar to plain SPARQL, thus making more complex transformations
and queries possible.

Besides, XSPARQL can be used as a SPARQL scripting framework making
queries possible which can not be achieved that way in SPARQL alone for
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1 construct {
2 $person :name { fn:concat($firstname, " ", $lastname) } .
3 }
4 from <relations.rdf>
5 where {
6 $person :firstname $firstname .
7 $person :lastname $lastname .
8 }

Listing 1.3: Simple XSPARQL string manipulation

RDF to RDF transformations. Since XSPARQL provides access to dynamically
specified RDF data sources, it allows querying a dynamic set of named graphs
(e. g., merge multiple RDF graphs in a single one as specified by a master RDF
graph). SPARQL allows no extension by using functions. By allowing this via
the XQuery extension mechanisms, it becomes possible in XSPARQL to return
computed values or aggregated values. By using implementation specific
XQuery functions, as found in most implementations, XSPARQL provides
access to specific parts of XML chunks stored in RDF graphs.

Nevertheless the main use case for XSPARQL is data transformation and
data integration. XSPARQL can be used to access both XML and RDF data and
to emit data in the same two formats. XSPARQL is suited to make Semantic
Web clients work together with XML based web services.

Listing 1.3 shows a simple XSPARQL query very similar to SPARQL. The
query concatenates the first and last name of a person to a single string
containing both. SPARQL can not provide this kind of transformation because
of its lack of even simple string manipulation functions such as string concat-
enation. By using the XQuery function library, XSPARQL provides a simple
and intuitive solution for this problem.

Issues of XSPARQL Nevertheless XSPARQL reveals several issues when
working with complex queries featuring nested SPARQL parts. Even when
processing only medium sized RDF graphs, XSPARQL query evaluation per-
formance decreases fast. This performance decrease makes XSPARQL for
several use cases practically useless.

While common relational database systems (DBMS) allow the user to
create and query temporary tables, and XQuery too, allows one to create and
query temporary XML trees, SPARQL lacks a measure to create and query
temporary RDF graphs. XSPARQL inherits this feature lack from SPARQL and
thus rules certain use cases out.

Another problem are unintended results which may arise when writing
XSPARQL queries containing nested SPARQL parts. Depending on the query
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and the concrete data source, XSPARQL can show unexpected behaviour. The
author of such a query may comes to the conclusion that a variable “forgot
its value”, i. e., a variable occurs to be free although a value was assigned to
it earlier. To make it worse this behaviour seems even inconsistent over one
single data source.

1.5 Other Work Related to XSPARQL

Most of the ongoing work in the domain of XML-RDF data integration can
be assigned to one of two classes: Data Translation or Query Language
Integration.

Data Translation These approaches integrate XML and RDF by translating
the data directly to a format suited better for further processing. The TriX
[Carroll and Stickler, 2004] format is an alternative XML syntax for RDF data.
It allows defining syntactic extensions and macros by using XSLT. Based on
the XML Schema definition Gloze [Battle, 2006] aims at interpreting XML data
under the RDF data model by providing a custom mapping between specific
XML and RDF data. By translating XML to RDF and annotating the resulting
RDF data with meta data needed to evaluate XPath expressions Droop et al.
[2007] evaluate XPath expressions by evaluating it in the form of an converted
SPARQL query. By converting concrete XML Schemas to specified ontologies
Deursen et al. [2008] translate schema conformant XML data to RDF of the
specified target ontology.

Query Language Integration As XSPARQL these approaches aim at integ-
rating languages made for processing XML or RDF data. RDF Twig [Walsh,
2003] encoding (sub)trees occurring in RDF to abbrrdf/xml by XSLT using
an extension function. These subtrees are then easily processable in plain
XSLT. [Diego et al., 2008] extends XSLT by additional constructs allowing
to query SPARQL endpoints while processing the results given in an XML
format. SPARQL2XQuery [Bikakis et al., 2009] translates a SPARQL query to
XQuery by an OWL to XML Schema mapping. [Groppe et al., 2008] follows
a combined approach. First RDF data is translated in a custom XML format,
then, on top of this data, queries of a new language, embedding SPARQL in
XSLT/XQuery, are evaluated.

1.6 Thesis Structure

In Chapter 2 we describe some topics needed to understand the following
chapters. First we present an overview over different data formats, particu-
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larly XML and RDF, and corresponding query languages XQuery and SPARQL.
Additionally the original XSPARQL language is introduced. Next in Chapter 3
we present our extensions to XSPARQL. These two extensions are embedded
in the formal XSPARQL semantics (relying on the XQuery semantics). The new
XSPARQL prototype implementation is described in Chapter 4. Chapter 5 ex-
plains some optimisations we developed to make XSPARQL query execution
more efficient. To measure the effects of these optimisations we conducted a
practical evaluation, the results of which are given in Chapter 6.

In this work information about people and their relations is used as
running example. We will present, query, filter and transform data from this
domain in both XML and RDF.

10



Chapter 2

Preliminaries

The various data representation mechanisms used nowadays are capable of
making data of different sources accessible to computer programs. In this
chapter we describe two data representation formats: a tree based approach
(XML) in Section 2.1 and another one based on directed graphs (RDF) in
Section 2.2. Furthermore we present the corresponding query languages:
XQuery for XML in Section 2.3 and SPARQL for RDF in Section 2.4. In Section
2.5 will introduce XSPARQL, a language built by combining XQuery and
SPARQL to make transformations between XML and RDF easier.

2.1 Data Representation with XML

An XML document is a hierarchically structured document (thus tree based),
containing nested objects of different kinds. The most important ones are
elements, allowing the nested structure, attributes, being element annotations
and text, e. g., paragraphs of a document. Listing 2.1 shows the most import-
ant production rules of the XML grammar given in Appendix Section A.3.
An XML document consists of a root element prefixed by a prolog (see Rule
[1] in Listing 2.1), specifying the XML version and possibly the text encoding.
This root element can contain character data, other elements, unparsed char-
acter data, processing instructions and comments (see Rules [39] and [43]).
Attributes are contained in the XML element start tag (see Rules [40] and [41]).

The meaning of the nesting is not defined by XML but by the specification
of the concrete XML format used. It could mean for example composition,
aggregation, abstraction or some kind of inheritance. The strict hierarch-
ical structure of XML documents makes representation of data with cyclic
associations hard.
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1 [1] document ::= prolog element Misc*
2 [39] element ::= EmptyElemTag | STag content ETag
3 [40] STag ::= ’<’ Name (S Attribute)* S? ’>’
4 [41] Attribute ::= Name Eq AttValue
5 [42] ETag ::= ’</’ Name S? ’>’
6 [43] content ::= CharData? ((element | Reference | CDSect | PI |

Comment) CharData?)*

Listing 2.1: Excerpt of the XML grammar [Bray et al., 2008] in Appendix A.3

2.2 Data Representation with RDF

The Resource Description Framework (RDF) is a framework to describe
resources of different kinds. Theses resources are addressed by URIs. RDF
uses directed graphs as base data model. By adding relations, RDF provides
a versatile way to represent data as graphs.

URIs can also be written as QNames similar as in XML. RDF triples are
defined by three parts: subject, predicate and object. A set of RDF triples can
be represented as a directed graph (or RDF graph) with labelled nodes and
edges where the edge, or predicate, points from the subject to the object.

Definition 2.1 (RDF Triple, RDF Graph [Pérez et al., 2006]). Given the pair-
wise disjoint sets of URI references U , blank nodes B, and literals L a triple
(s, p, o) ∈ (U ∪ B)×U × (U ∪ B ∪ L) is called RDF triple. In such a triple s is
the subject, p is the predicate and o the object. A set of RDF triples is called RDF
graph.

URI references are used as names to uniquely define things, documents,
persons, etc.RDF literals are used to encode simple strings, possibly tagged
with a language annotation, or values of simple user-defined datatypes. Blank
nodes are unnamed or anonymous nodes in an RDF graph used to reference
to things without names or with unknown names (names meaning IRIs). But
they can be addressed within the RDF graph. It depends on the concrete
syntax how this behaviour can be achieved.

Unlike XML, RDF is defined in an abstract and syntax agnostic way to
represent data, based on the mathematical notation of the directed graph.
Therefore example RDF graphs can be drawn as graphs straightforwardly.

Example 2.1. Figure 2.1 shows the same data as Listing 1.1 in RDF. The three
persons are represented by three different blank nodes. The predicate a is a
shorthand for rdf:type which again means, that the subject is an instance of
the class at object position, foaf:Person in this example. Each person has a
name, given as a string literal, and relations to other persons. The example
also shows how strings can be tagged with language tags ("Charlie"@en
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a

foaf:Person "Bob"

"Alice"

"Charles"

"Charlie"@en "Karli"@de

foaf:knows

foaf:knows

foaf:knows

a

a

foaf:name

foaf:name

foaf:name

foaf:nicknamefoaf:nickname

Figure 2.1: RDF example data

being the English nickname and "Karli"@de being a nickname of the same
person in German).

The namespace prefix rdf resolves to the URL http://www.w3.org/1999/

02/22-rdf-syntax-ns#. The Friend-Of-A-Friend (FOAF) vocabulary [FOAF]
used here was created exactly for the domain of people and their relations to
each other. The namespace prefix foaf resolves to http://xmlns.com/foaf/

0.1/.

2.2.1 RDF Syntax

There exist different serialisation syntaxes for RDF namely RDF/XML [Beckett,
2004], RDFa [Adida and Birbeck, 2008] for embedding RDF in XHTML pages,
Notation 3 [Berners-Lee, 1998], N-Triples and Turtle [Beckett and Berners-Lee,
2008], where the latter three are related closely. In this work RDF examples
are given in the Terse RDF Triple Language, shortly called Turtle.

Turtle is a subset of Notation 3 and allows to represent RDF data in a con-
cise and intuitive way. Turtle is also the basis for the syntax of SPARQL basic
graph patterns, used for graph pattern matching, and in SPARQL construct

definitions [Prud’hommeaux and Seaborne, 2008]. Triples are represented
as three consecutive strings—subject, predicate and object—separated with
whitespace and terminated by a dot. Blank nodes can be represented as a pair
of square brackets (called anonymous blank node) or as a node label starting
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1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 _:b1 a foaf:Person;
3 foaf:name "Alice";
4 foaf:knows _:b2;
5 foaf:knows _:b3.
6 _:b2 a foaf:Person;
7 foaf:name "Bob";
8 foaf:knows _:b3.
9 _:b3 a foaf:Person;

10 foaf:name "Charles";
11 foaf:nickname "Charlie"@en, "Karli"@de.

Listing 2.2: RDF example data in Turtle

with an underscore and a colon (labelled blank node). There exist different
abbreviations to reduce repetition, such as the semicolon character to group
predicate-object lists for the same subject, or the comma character to group
lists of objects for the same subject-predicate pair.

Example 2.2. Listing 2.2 shows a Turtle serialisation of the RDF graph of
Figure 2.1. Since the first four triples share the same subject, the abbrevi-
ation syntax using the semicolon is used. The last two triples, shown on
line 11, use the abbreviation syntax for triples sharing both, subject and
predicate. The blank node _:b3 is subject of two triples with the same predic-
ate, foaf:nickname. The person has nicknames in two different languages,
one, "Charlie"@en annotated with an English language tag and another one,
"Karli"@de annotated with a German language tag.

RDF/XML [Beckett, 2004] in contrast is a more verbose RDF representation
using XML.

Example 2.3. Listing 2.3 shows the same example as Listing 2.2 in RDF/XML
syntax.

One problem of RDF/XML when using XML tools is the ambiguity of the
syntax. One single RDF graph can represented in different ways. Listing 2.2,
2.4, and 2.5 contain different serialisations of the relation of Alice and Charles.
All three encode the same RDF graph.

A structured way to access and manipulate these expressive data formats
is needed. The next two sections explain the most important query languages
for XML and RDF.
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1 <?xml version="1.0"?>
2 <rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:rdf="http://www.

w3.org/1999/02/22-rdf-syntax-ns#">
3 <foaf:Person>
4 <foaf:name>Alice</foaf:name>
5 <foaf:knows>
6 <foaf:Person>
7 <foaf:name>Bob</foaf:name>
8 <foaf:knows rdf:nodeID="b3" />
9 </foaf:Person>

10 </foaf:knows>
11 <foaf:knows>
12 <foaf:Person rdf:nodeID="b3">
13 <foaf:name>Charles</foaf:name>
14 </foaf:Person>
15 </foaf:knows>
16 </foaf:Person>
17 </rdf:RDF>

Listing 2.3: RDF example data in RDF/XML

1 <rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:rdf="http://www.
w3.org/1999/02/22-rdf-syntax-ns#">

2 <foaf:Person rdf:about="alice/me">
3 <foaf:knows>
4 <foaf:Person foaf:name="Charles"/>
5 </foaf:knows>
6 </foaf:Person>
7 </rdf:RDF>

Listing 2.4: Alternative RDF/XML serialisation of Listing 2.3

1 <rdf:RDF xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:rdf="http://www.
w3.org/1999/02/22-rdf-syntax-ns#">

2 <rdf:Description rdf:nodeID="x">
3 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
4 <foaf:name>Charles</foaf:name>
5 </rdf:Description>
6 <rdf:Description rdf:about="alice/me">
7 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
8 <foaf:knows rdf:nodeID="x"/>
9 </rdf:Description>

10 </rdf:RDF>

Listing 2.5: Another alternative RDF/XML serialisation of Listing 2.3
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[33] FLWORExpr ::= (ForClause | LetClause)+ WhereClause? OrderByClause?
"return" ExprSingle

[34] ForClause ::= "for" "$" VarName TypeDeclaration? PositionalVar? "in
" ExprSingle ("," "$" VarName TypeDeclaration? PositionalVar? "in"
ExprSingle)*

[35] PositionalVar ::= "at" "$" VarName
[36] LetClause ::= "let" "$" VarName TypeDeclaration? ":=" ExprSingle

("," "$" VarName TypeDeclaration? ":=" ExprSingle)*
[37] WhereClause ::= "where" ExprSingle
[38] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))

OrderSpecList
[39] OrderSpecList ::= OrderSpec ("," OrderSpec)*
[40] OrderSpec ::= ExprSingle OrderModifier
[41] OrderModifier ::= ("ascending" | "descending")? ("empty" ("greatest

" | "least"))? ("collation" URILiteral)?
[45] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle "else" ExprSingle
[118] TypeDeclaration ::= "as" SequenceType

Listing 2.6: XQuery grammar [Boag et al., 2007]

2.3 Querying XML Data with XQuery

XQuery is an XML query languaged specified by a W3C recommendation
[Boag et al., 2007]. In this section we will introduce the syntax, the processing
model, and the semantics of XQuery.

2.3.1 Syntax of XQuery

An XQuery query starts with a prolog (containing namespace-, function-
and variable declarations), followed by a sequence of FLWOR expressions.
Listing 2.6 lists the most important grammar production rules of the FLWOR
expression.

FL The expression starts with a list of for and let statements (see Rule
[33] in Listing 2.6). for expressions (Rule [34]) iterate over values of a
sequence. let expressions (Rule [36]) assign a sequence to a variable.
Sequences can be generated by a nested FLWOR expression again.

W where expressions (Rule [37]) are used to filter values of the processed
sequence.

O Ordering of sequences is accomplished by order by (Rules 38]–[41]).

R The return expression (Rule [33]) is responsible for building the result
sequence. This expression consists of a template using the variables of
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1 <relations>
2 { for $person in /relations/person
3 return
4 <person name="{$person/@name}">
5 { let $friends := $person/knows
6 return <friends>{count($friends)}</friends>
7 }
8 </person>
9 }

10 </relations>

Listing 2.7: Simple XQuery query

the former for and let expressions. It can also contain nested FLWOR
expressions.

Additionally to FLWOR expressions, XQuery allows conditional expressions also
known from imperative programming languages. Such an IfExpr, as given by
Rule [45], is given by an Expr as condition, an ExprSingle used if the condition
evaluates to fn:true, and a second ExprSingle used otherwise.

Example 2.4. The example query in Listing 2.7 creates a document containing
a list of persons, the only child being an element friends, containing the
number of persons known by the person. First the XML root element is
constructed. The for expression iterates over all person elements which are
children of the root element relations of the source XML tree. For each of
these persons, the name attribute, is emitted as an attribute again. While still
iterating over the persons, all the knows children are extracted and stored in
the new $friends variable. Finally a new child element friends, containing
the number of elements, i. e., knows relations, is created. Listing 1.1 shows the
XML source document used and Listing 2.8 shows the corresponding XML
result document.

The result in Listing 2.8 shows that Alice knows two people, Bob knows
one person and Charles knows nobody.

2.3.2 Processing Model of XQuery

The XQuery processing model shown in Figure 2.2 shows core notions of the
following XQuery semantics.

Generally XQuery queries are processed in two phases: Static analysis
phase and dynamic evaluation phase. Before entering the static analysis
phase, schema definitions may have to be imported, before the dynamic
evaluation phase, the data (e. g. an XML document) has to be parsed.

17
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1 <relations>
2 <person name="Alice">
3 <friends>2</friends>
4 </person>
5 <person name="Bob">
6 <friends>1</friends>
7 </person>
8 <person name="Charles">
9 <friends>0</friends>

10 </person>
11 </relations>

Listing 2.8: Result of Listing 2.7

2.3.2.1 Static Analysis Phase

First the XQuery query is parsed and, given no errors occurred, represented
in an Op-Tree (SQ1). Next, parts of the static context is initialised from the
environment (SQ2). The static context contains information needed later
in the static analysis phase but also in the dynamic evaluation phase. The
semantics refers to the static context with the symbol statEnv. Parts of the
static context are initialised with information from the query itself, i. e.,
namespace declarations (SQ3). An example for the usage of static context
information is expanding QNames afterwards (SQ4). The central step in this
phase is normalisation (SQ5): An XQuery query is reformulated into a simpler
sublanguage XQuery Core. Since this step minimises the number of different
syntactic objects, the semantics definition is simpler. When enabled, static
type checking is performed as the last step in this phase (SQ6). It determines
type information for all the expressions (as far as this is possible) and throws
an error if computed and declared types of an expression are incompatible.

2.3.2.2 Dynamic Evaluation Phase

Again the environment, in this case the dynamic context, has to be initialised
(DQ2, DQ3). The dynamic context contains runtime information and provides
access to static context information. When the query is eventually evaluated
the XQuery semantics uses information of the dynamic environment, referred
to as dynEnv, as well as an XDM instance, i. e., a parsed XML document (DQ4,
DQ5).

In summary the semantics of most syntactic objects is given by rules
in three different stages: normalisation, static (type) analysis and dynamic
evaluation.
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Figure 2.2: XQuery Processing Model Overview [Draper et al., 2007]

2.3.3 Semantics of XQuery

The semantics of XQuery, is defined in [Draper et al., 2007] in two steps:
First the full XQuery syntax is reduced to the so called XQuery Core language.
This step is called normalisation. XQuery Core is defined as abstract syntax
whose intent is to provide a minimal set of expressions by replacing the
richer expressions, written as syntactic sugar, with the simplest possible form
of these expressions. XQuery Core is a minimal subset of XQuery losing no
expressivity. The goals of this reduction are to minimise repetition in the
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semantics definition and to make implementation and optimisation easier.
The next step in the semantics definition, static type analysis, can be used

to infer types for expressions. At this stage no information about the input
document(s) is used, only the query itself is analysed. Therefore not all type
errors can be caught. In the last step the operational semantics of XQuery is
defined using dynamic evaluation rules. They produce the XML result while
ensuring type coherence.

The following semantics presentation is limited to FLWOR expressions,
because this expression type is the only one needed to define the XSPARQL
language.

2.3.3.1 Notations and Predefined Judgements

The basic building block of the XQuery semantics is the judgement. A judge-
ment can either be true or false. The following judgement is true if the result
of the evaluation of Expr is Value:

Expr⇒ Value

The next judgement is true if the evaluation result of Expr is of type Type:

Expr : Type

The following judgement is true if Type1 is a subtype of Type0:

Type1 <: Type0

The notions of static context and dynamic context was already introduced
in Section 2.3.2. In the semantics specification these contexts are implemented
in two environments. An environment contains pairs of symbols (or keys) and
objects grouped in environment components. To access the value, stored in
the varValue component, of a variable var, of the environment dynEnv the
following judgement would be used:

dynEnv.varValue(var)

Corresponding to the processing model a static environment statEnv and
a dynamic environment dynEnv are used. In the semantics rules these en-
vironments are used to provide a context to store objects such as variable
values, types or functions. To show which environment is used, the judge-
ment is prefixed by the environment abbreviation followed by the ` symbol.
Therefore the following judgement would be read as: Given the dynamic
environment dynEnv the expression Expr is evaluated to the value Value:
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dynEnv ` Expr⇒ Value

To map a symbol symbol to a new object object in the environment com-
ponent envComp of the environment env, the following notation is used:

env + envComp(symbol⇒ object)

Inference rules are written as a list of judgements called premises followed
by a conclusion judgement below:

premise1 . . . premisen

conclusion

The conclusion of such an inference rule holds, if all the specified premises
hold.

A special notation of inference rules used for normalisation, is the mapping
rule:

object
==

mapped object

The following example mapping rule is used during normalisation of
FLWOR expressions. It maps XQuery ForClauses to the simpler XQuery Core
ForClauses:

u

ww
v

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in Expr1,
· · · ,
$VarNamen OptTypeDeclarationn OptPositionalVarn in Exprn
FormalReturnClause

}

��
~

Expr
==

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in
q

Expr1
y

Expr return

· · ·
for $VarNamen OptTypeDeclarationn OptPositionalVarn in

q
Exprn

y
Expr return

JFormalReturnClauseKExpr

2.3.3.2 FLWOR Expression

First XQuery Core only grammar productions, needed to simplify the se-
mantics specification, are introduced (see Listing 2.9).

Additionally three new grammar productions used only in the semantics
specification are introduced in Listing 2.10. These new rules are not part of
XQuery Core but they allow to express the same semantics in less rules.
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[24 (Core)] FLWORExpr ::= (ForClause | LetClause) "return" ExprSingle
[25 (Core)] ForClause ::= "for" "$" VarName TypeDeclaration?

PositionalVar? "in" ExprSingle
[27 (Core)] LetClause ::= "let" "$" VarName TypeDeclaration? ":="

ExprSingle
[26 (Core)] PositionalVar ::= "at" "$" VarName
[75 (Core)] TypeDeclaration ::= "as" SequenceType
[28 (Core)] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))

OrderSpecList
[29 (Core)] OrderSpecList ::= OrderSpec ("," OrderSpec)*
[30 (Core)] OrderSpec ::= ExprSingle OrderModifier
[31(Core)] OrderModifier ::= ("ascending" | "descending")? ("empty" ("

greatest" | "least"))? ("collation" URILiteral)?

Listing 2.9: XQuery Core grammar productions

[65 (Formal)] FormalFLWORClause ::= ForClause | LetClause | WhereClause
| OrderByClause

[66 (Formal)] FormalReturnClause ::= FormalFLWORExpr | ("return" Expr)
[67 (Formal)] FormalFLWORExpr ::= FormalFLWORClause FormalReturnClause

Listing 2.10: XQuery semantics grammar productions

Normalisation

Rule 2.1. In this step FLWOR expressions are normalised to XQuery Core
expressions. First the ForClause converted to simple nested ForClauses binding
only a single variable:

u

ww
v

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in Expr1,
· · · ,
$VarNamen OptTypeDeclarationn OptPositionalVarn in Exprn
FormalReturnClause

}

��
~

Expr
==

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in
q

Expr1
y

Expr return

· · ·
for $VarNamen OptTypeDeclarationn OptPositionalVarn in

q
Exprn

y
Expr return

JFormalReturnClauseKExpr

Rule 2.2. Likewise compound LetClauses are normalised to simple LetClauses
accordingly, binding one variable each:
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u

ww
v

let $VarName1 OptTypeDeclaration1 := Expr1,
· · · ,
$VarNamen OptTypeDeclarationn := Exprn
FormalReturnClause

}

��
~

Expr
==

let $VarName1 OptTypeDeclaration1 :=
q

Expr1
y

Expr return

· · ·
let $VarNamen OptTypeDeclarationn :=

q
Exprn

y
Expr return

JFormalReturnClauseKExpr

Rule 2.3. XQuery WhereClauses are simplified to IfExpr essions:

q
where Expr1 FormalReturnClause

y
Expr

==

if(
q

Expr1
y

Expr)then JFormalReturnClauseKExpr else()

Rule 2.4. The OrderByClause is normalised via an auxiliary mapping rule
J·KOrderSpecList:

Jstable? order by OrderSpecList FormalReturnClauseKExpr
==

JOrderSpecListKOrderSpecList return JFormalReturnClauseKExpr

Rule 2.5. A FormalReturnClause is normalised by reduction to the contained
Expr. This rule removes superfluous usage of the return keyword introduced
by the ForClause and LetClause normalisation rules:

Jreturn ExprKExpr
==

JExprKExpr

On such normalised queries the semantics of the single ForClause and the
single LetClause are defined.

For expression Next, we define the semantics for the normalised ForClause
by means of static type analysis and dynamic evaluation semantics.

The first static type analysis rule handles the single ForClause without a Static type analysis

position variable or typing information.
The auxiliary function quantifier determines the multiplicity of items of

Type1. Possible result values of this function are one (for a single value), ?
(for none or one values), * (for zero or more values), or + (for one or more
values).
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Rule 2.6. By the first judgement the type, Type1, of the expression Expr1 is
inferred. The second judgement expands the variable name to a variable in
the static environment. Finally the type Type2 of the result expression Expr2 is
inferred with the type of Variable1 being the prime type of Type1. The prime
type is computed by building a union over all static item types in Type1.

statEnv ` Expr1 : Type1
statEnv ` VarName1 of var expands to Variable1

statEnv + varType(Variable1 ⇒ prime(Type1)) ` Expr2 : Type2

statEnv ` for $VarName1 in Expr1 return Expr2 : Type2 · quantifier(Type1)

Rule 2.7. For for loops with a positional variable (at), we can set the type of
that variable to xs:integer in the static environment.

statEnv ` Expr1 : Type1
statEnv ` VarName1 of var expands to Variable1

statEnv ` VarNamepos of var expands to Variablepos

statEnv + varType
(

Variable1 ⇒ prime(Type1);
Variablepos ⇒ xs:integer

)
` Expr2 : Type2

statEnv ` for $VarName1 at $VarNamepos in Expr1
return Expr2 : Type2 · quantifier(Type1)

Rule 2.8. In for loops with a type declaration (as), the type of the input
expression Expr1 is checked to be a subtype of the declared type.

statEnv ` Expr1 : Type1
Type0 = JSequenceTypeKsequencetype
statEnv ` prime(Type1) <: Type0

statEnv ` VarName1 of var expands to Variable1
statEnv + varType(Variable1 ⇒ prime(Type1)) ` Expr2 : Type2

statEnv ` for $VarName1 as SequenceType in Expr1
return Expr2 : Type2 · quantifier(Type1)

Rule 2.9. Finally, a last rule contains the definition of a ForClause containing
a position variable as well as a type declaration.

statEnv ` Expr1 : Type1
Type0 = JSequenceTypeKsequencetype
statEnv ` prime(Type1) <: Type0

statEnv ` VarName1 of var expands to Variable1
statEnv ` VarNamepos of var expands to Variablepos

statEnv + varType
(

Variable1 ⇒ prime(Type1);
Variablepos ⇒ xs:integer

)
` Expr2 : Type2

statEnv ` for $VarName1 as SequenceType at $VarNamepos in Expr1
return Expr2 : Type2 · quantifier(Type1)
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Rule 2.10. If the expression Expr1 evaluates to the empty sequence, the wholeDynamic evaluation

for expression evaluates to the empty sequence.

dynEnv ` Expr1 ⇒ ()

statEnv ` for $VarName1OptTypeDeclaration OptPositionalVar in Expr1
return Expr2 ⇒ ()

Rule 2.11. Otherwise, if the expression Expr1 evaluates to non-empty a
sequence of items Item1, . . . , Itemn, the ForClause’s body Expr2 is evaluated for
each of these items. Eventually the evaluation of the ForClause results in the
sequence of these evaluated items Value1, . . . , Valuen.

dynEnv ` Expr1 ⇒ Item1, . . . , Itemn
statEnv ` VarName of var expands to Variable

dynEnv + varValue(Variable⇒ Item1) ` Expr2 ⇒ Value1
· · ·

dynEnv + varValue(Variable⇒ Itemn) ` Expr2 ⇒ Valuen

dynEnv ` for $VarName in Expr1 return Expr2 ⇒ Value1, . . . , Valuen

Rule 2.12. In for loops where a position variable is used, the number of the
current iteration is assigned to it.

dynEnv ` Expr1 ⇒ Item1, . . . , Itemn
statEnv ` VarName of var expands to Variable

statEnv ` VarNamepos of var expands to Variablepos
dynEnv + varValue(Variable⇒ Item1; Variablepos ⇒ 1) ` Expr2 ⇒ Value1

· · ·
dynEnv + varValue(Variable⇒ Itemn; Variablepos ⇒ n) ` Expr2 ⇒ Valuen

dynEnv ` for $VarName at $VarNamepos in Expr1
return Expr2 ⇒ Value1, . . . , Valuen

Rule 2.13. In for loops with a type declaration, the type of each Itemi is
checked against the declared type.

dynEnv ` Expr1 ⇒ Item1, . . . , Itemn
Type0 = JSequenceTypeKsequencetype
statEnv ` Item1 matches Type0

· · ·
statEnv ` Itemn matches Type0

statEnv ` VarName of var expands to Variable
dynEnv + varValue(Variable⇒ Item1) ` Expr2 ⇒ Value1

· · ·
dynEnv + varValue(Variable⇒ Itemn) ` Expr2 ⇒ Valuen

dynEnv ` for $VarName as SequenceType in Expr1
return Expr2 ⇒ Value1, . . . , Valuen
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Rule 2.14. Analogously to the static type checking rules, another rule specifies
the behaviour when both a position variable and a type declaration are
present.

dynEnv ` Expr1 ⇒ Item1, . . . , Itemn
Type0 = JSequenceTypeKsequencetype
statEnv ` Item1 matches Type0

· · ·
statEnv ` Itemn matches Type0

statEnv ` VarName of var expands to Variable
statEnv ` VarNamepos of var expands to Variablepos

dynEnv + varValue(Variable⇒ Item1; Variablepos ⇒ 1) ` Expr2 ⇒ Value1
· · ·

dynEnv + varValue(Variable⇒ Itemn; Variablepos ⇒ n) ` Expr2 ⇒ Valuen

dynEnv ` for $VarName as SequenceType at $VarNamepos in Expr1
return Expr2 ⇒ Value1, . . . , Valuen

Let Expression This section defines the semantics of the LetClause again
first by static type analysis and then by dynamic evaluation semantics.

Rule 2.15. First the type of Expr1, Type1 is inferred. Next the statical envir-Static type analysis

onment is extended by type information for the expanded variable and the
type of the resulting Expr2, Type2 is inferred.

statEnv ` Expr1 : Type1
statEnv ` VarName of var expands to Variable

statEnv + varType(Variable⇒ Type1) ` Expr2 : Type2

statEnv ` let $VarName := Expr1 return Expr2 : Type2

Rule 2.16. When an explicit type declaration occurs, the type of the first
expression, Expr1, has to be a subtype of the declared type.

statEnv ` Expr1 : Type1
Type0 = JSequenceTypeKsequencetype

statEnv ` Type1 <: Type0
statEnv ` VarName of var expands to Variable

statEnv + varType(Variable⇒ Type0) ` Expr2 : Type2

statEnv ` let $VarName as SequenceType := Expr1 return Expr2 : Type2

Rule 2.17. After assigning the result of Expr1 to expanded variable, Expr2 isDynamic evaluation

evaluated in the extended static environment.
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statEnv ` Expr1 ⇒ Value1
statEnv ` VarName of var expands to Variable

dynEnv + varValue(Variable⇒ Value1) ` Expr2 ⇒ Value2

statEnv ` let $VarName := Expr1 return Expr2 ⇒ Value2

Rule 2.18. With a type declaration the LetClause the evaluation result of Expr1
is checked to be of the declared type.

statEnv ` Expr1 ⇒ Value1
Type0 = JSequenceTypeKsequencetype
statEnv ` Value1 matches Type0

statEnv ` VarName of var expands to Variable
dynEnv + varValue(Variable⇒ Value1) ` Expr2 ⇒ Value2

statEnv ` let $VarName as SequenceType := Expr1 return Expr2 ⇒ Value2

For the purposes of this thesis the overall semantics of for and let

expressions are most important, we refer the interested reader to the full
XQuery semantics [Draper et al., 2007] for further details.

2.4 Querying RDF Data with SPARQL

There are different query forms available explained below: ask, construct,
describe, and select.

2.4.1 Syntax of SPARQL

A SPARQL query consists of the following main parts in exactly this order:

1. A Prolog for definition of base and default namespace as well as name-
space abbreviations.

2. A clause determining the result format of the query. One of the follow-
ing 4 query forms can be used:

Construct returns an RDF graph specified by a template in a syntax
similar to Turtle.

Select projects the result to a list of variable bindings comparable to
the result of an SQL query.

Ask returns a boolean value which is true if the graph pattern can be
matched at least once and false otherwise.

Describe returns an implementation-dependent RDF graph describing
the selected nodes.
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[1] Query ::= Prologue ( SelectQuery | ConstructQuery | DescribeQuery |
AskQuery )

[5] SelectQuery ::= ’SELECT’ ( ’DISTINCT’ | ’REDUCED’ )? ( Var+ | ’*’ )
DatasetClause* WhereClause SolutionModifier

[6] ConstructQuery ::= ’CONSTRUCT’ ConstructTemplate DatasetClause*
WhereClause SolutionModifier

[9] DatasetClause ::= ’FROM’ ( DefaultGraphClause | NamedGraphClause)
[10] DefaultGraphClause ::= SourceSelector
[11] NamedGraphClause ::= ’NAMED’ SourceSelector
[12] SourceSelector ::= IRIref | Var
[13] WhereClause ::= ’WHERE’? GroupGraphPattern

Listing 2.11: Main SPARQL syntax production rules

3. The DatasetClause determines a set of—possibly named—RDF source
graphs. The dataset can be given explicitly, but an implicitly given
dataset is also possible—for example when querying specific SPARQL
services, also often called SPARQL endpoints.

4. The WhereClause provides the SPARQL graph pattern matching facility.
This feature allows to match parts of RDF graphs by specifying so called
graph patterns. Graph patterns can be triple patterns, which are triples
allowing also variables. Furthermore a graph pattern can contain
unions of other graph patterns or optional graph patterns. Graph
patterns are evaluated on the graph representation of an RDF graph
and are therefore independent of the concrete serialisation format.

5. The optional solution modifier part contains operators for ordering, du-
plicate elimination and slicing of the result set.

The main grammar productions are given in Listing 2.11.

Example 2.5. An example query is given in Listing 2.12: Return a list of
the names of all persons occurring in the relations.rdf (see Listing 2.2)
graph. In the prolog the foaf prefix is bound to the FOAF namespace
http://xmlns.com/foaf/0.1/. The SELECT keyword implies that we are only
interested in the $name variable. In the WhereClause $person is bound to
a node of type foaf:Person. Then the $name variable of the SelectClause is
bound to the name of that person. The WhereClause allows similar shortcuts
as already specified for Turtle. The SolutionModifier declares to order the
results by the $name variable. Table 2.1 on page 29 shows the result being a
list of $name variable bindings.

When processing a SPARQL query first the prolog is processed by expand-
ing all namespace prefixes. After that the prolog is not needed anymore. The
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1 prefix foaf: <http://xmlns.com/foaf/0.1/>
2 select $name
3 from <relations.rdf>
4 where { $person a foaf:Person ; foaf:name $name . }
5 order by $name

Listing 2.12: Simple SPARQL query

Result # $name

1 “Alice”
2 “Bob”
3 “Charles”

Table 2.1: Result of Listing 2.12

central part of a SPARQL query is the WhereClause. Its evaluation returns a
list of variable binding sets. The result format as well as ordering and slicing
can be seen as a query post-processing task.

2.4.1.1 Formal syntax of the WhereClause

Next we give an algebraic formalisation of the core fragment of SPARQL
following [Pérez et al., 2006]. Additionally to the terms defined in Section 2.2
we assume the existence of a set of variables V0 being disjoint from the sets
U , B, and L. As an abbreviation we define T = U ∪ B ∪ L.

Definition 2.2 (Pérez et al., 2006). A triple pattern is a tuple (U ∪ B ∪ V)×
(U ∪ V)× (T ∪ V).

If P, P1, and P2 are graph patterns and R is a SPARQL built-in condition,
then the following are also graph patterns:

1. Triple pattern;

2. (P1 AND P2);

3. (P1 UNION P2);

4. (P1 OPT P2);

5. (P FILTER R).

Example 2.6. The following are valid triple patterns:
($X, $Y, $Z), (: p1, :name, "Adam").

The following is a valid graph pattern:
(($X, $Y, $Z) AND (: p1, :name, "Adam")).
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Definition 2.3 (Pérez et al., 2006). A SPARQL built-in condition is an expression
built of elements of the set V ∪ U ∪ L, logical connectives (¬, ∧, ∨), equality
and inequality symbols (=, <, >, ≤, ≥) and the unary predicates bound,
isBlank, isIRI, isLiteral. We restrict our definition of FILTER expressions by
ignoring the inequality symbols and all unary predicates but bound.

If $X, $Y ∈ V and c ∈ U ∪ L and R1 and R2 are built-in conditions then
the following are built-in conditions:

1. bound($X);

2. $X = c and $X = $Y, ;

3. ¬R1, (R1 ∨ R2), and (R1 ∧ R2).

The function var(P) of a graph pattern P returns the set of variables occurring
in P. Consequently var(R) returns the set of variables occurring in the built-in
condition R.

Furthermore we assume that all variables occurring in a built-in condition
also occur in the corresponding graph pattern, i. e., for (P FILTER R) the
condition var(R) ⊆ var(P) holds.

Example 2.7. The following are valid built-in conditions: bound($X), $X =

"Adam", ((bound($X)) ∧ $X = "Adam") ∨ ¬bound($Y)).

2.4.2 Semantics of SPARQL graph patterns

We define the SPARQL semantics according to [Pérez et al., 2006].

Definition 2.4. Instead of the definition of a mapping as a partial function
µ : V → T in [Pérez et al., 2006], we define a mapping µ from V ∪ B to T as
a partial function µ : (V ∪ B)→ T . The domain of µ, dom(µ), is the subset
of V ∪ B where µ is defined. By µ(t) we denote the triple obtained when
replacing the variables and blank nodes in the triple pattern t according to µ.
Two mappings µ1 and µ2 are compatible if for every v ∈ dom(µ1) ∩ dom(µ2),
µ1(v) = µ2(v).

Example 2.8. Consider the following three solution mappings:
µ1 = {($X, "Adam"), ($Y, "Betty")}, µ2 = {($X, "Adam"), ($Z, "Carol")},

and µ3 = {($Z, "Derek")}.
The following are results of compatibility between these three mappings:

1. Since dom(µ1) ∩ dom(µ2) = {$X} and µ1($X) = µ2($X), the two
mappings µ1 and µ2 are compatible;

2. Since dom(µ1) ∩ dom(µ3) = ∅, the two mappings µ1 and µ3 are trivi-
ally compatible;
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3. Since dom(µ2) ∩ dom(µ3) = {$Z} and µ1($Z) 6= µ2($Z), the two
mappings µ2 and µ3 are not compatible.

Ω1 and Ω2 denote sets of solution mappings.

Definition 2.5 (Pérez et al., 2006). We define the join, union, difference, and
left outer join as:

1. Ω1 ./ Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings}

2. Ω1 ∪Ω2 = {µ|µ ∈ Ω1 or µ ∈ Ω2}

3. Ω1 \Ω2 = {µ ∈ Ω1| for all µ′ ∈ Ω2, µ and µ′ are not compatible mappings}

4. Ω11Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \Ω2)

Example 2.9. Consider the following two solution sets:
Ω1 = {{($X, "Adam"), ($Y, "Betty")}, {($X, "Adam"), ($Z, "Carol")}},
Ω2 = {{($Z, "Derek")}},
then:

1. Ω1 ./ Ω2 = {{($X, "Adam"), ($Y, "Betty"), ($Z, "Derek")}}

2. Ω1 ∪Ω2 =


{($X, "Adam"), ($Y, "Betty")},
{($X, "Adam"), ($Z, "Carol")},
{($Z, "Derek")}


3. Ω1 \Ω2 = {{($X, "Adam"), ($Z, "Carol")}}

4. Ω11Ω2 =

{
{($X, "Adam"), ($Y, "Betty"), ($Z, "Derek")},
{($X, "Adam"), ($Z, "Carol")}

}
Based on the previous definitions we define the semantics of graph

patterns as function J·KD. This function takes a graph pattern expression as
argument, while D denotes the RDF dataset, and returns a set of solution
mappings.

Definition 2.6 (Pérez et al., 2006). Let D be an RDF dataset over T , t a triple
pattern and P1, P2 graph patterns. Then the evaluation of a graph pattern
over D, denoted by J·KD, is defined recursively as follows:

1. JtKD = {µ|dom(µ) = var(t) and µ(t) ∈ D} where var(t) is the set of
variables occurring in t;

2. JP1 AND P2KD = JP1KD ./ JP2KD;

3. JP1 OPT P2KD = JP1KD1 JP2KD;
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4. JP1 UNION P2KD = JP1KD ∪ JP2KD.

Definition 2.7 (Pérez et al., 2006). The semantics for FILTER expressions is
defined as follows: Given a mapping µ and a built-in condition R, we say
that µ satisfies R, denoted by µ |= R, if:

1. R is bound($X) and $X ∈ dom(µ);

2. R is $X = c, $X ∈ dom(µ) and µ($X) = c;

3. R is $X = $Y, $X ∈ dom(µ), $Y ∈ dom(µ), and µ($X) = µ($Y);

4. R is (¬R1), R1 is a built-in condition and it is not the case that µ |= R1;

5. R is (R1 ∨ R2), R1 and R2 are built-in conditions, and µ � R1 or µ |= R2;

6. R is (R1 ∧ R2), R1 and R2 are built-in conditions, µ � R1 and µ |= R2.

Definition 2.8 (Pérez et al., 2006). Given an RDF dataset D and a FILTER
expression (P FILTER R), then

J(P FILTER RKD = {µ ∈ JPKD |µ � R}.

Example 2.10. Consider the following RDF dataset D:

D =


(B1, : name, "Adam"), (B1, : email, me@adam.com),
(B2, : name, "Betty"), (B1, : homepage, http://adam.com),
(B3, : name, "Carol"), (B2, : email, betty@mail.com),
(B4, : name, "Derek"), (B3, : phone, +43-1234-98765)


Next we give example graph patterns and their evaluation results. We

chose to represent the set of solution mappings as a table instead of the
familiar set notation.

• P1 = (($P, : email, $E) OPT ($P, : homepage, $H)). Then

JP1KD = J($P, : email, $E)KD1 J($P, : homepage, $H)KD =

$P $E $H

B1 me@adam.com http://adam.com
B2 betty@mail.com

• Let
P2 = (($P, : name, $N) AND (($P, : email, $E)

UNION ($P, : homepage, $E))

Then
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JP2KD = J($P, : name, $N)KD

./ (J($P, : email, $E)KD ∪ J($P, : homepage, $H)KD) =

$P $N $E $H

B1 “Adam” me@adam.com
B1 “Adam” http://adam.com
B2 “Betty” betty@mail.com

• P3 = ((($P, : name, $N) OPT (($P, : email, $E)) FILTER ¬bound(?E)).
Then
JP3KD = {µ ∈ (J($P, : name, $N)KD1 J($P, : email, $E)KD)

| µ |= ¬bound($E)} =

$P $N $E

B3 “Carol”
B4 “Derek”

Definition 2.9 (Prud’hommeaux and Seaborne, 2008). Before returning the
result SPARQL replaces the active graph of a query (which can be understood
as a representation of the query’s dataset) is replaced by the so called scoping
graph. The scoping graph is equivalent to the active graph, but it has no blank
nodes in common with the active graph. The concept of the scoping graph
becomes clearer when assuming that after evaluating the whole SPARQL
graph pattern of a SPARQL WhereClause, all blank node labels are renamed.
The new names of these blank nodes is completely arbitrary as long as one
single blank node gets exactly one blank node label. This definition implies
that blank node label es are only valid for one solution mappings set and it
is therefore impossible to relate a blank node of a solution mappings set to a
blank node of an RDF graph by itself.

Before any other following steps such as projection, ordering, and slicing,
the domain of the solution mappings is reduced to V , thus deleting all blank
node mappings.

result(Ω) = {µ′|µ ∈ Ω, µ′ = reduce(µ), µ′ 6= ∅}

reduce(µ) = {m|m ∈ µ, dom(m) ∈ V}
The result(Ω) function removes every relation between B and T from the

set of solution mappings Ω.

Example 2.11. Given the RDF dataset of Listing 2.13, we give the following
example queries and their evaluation results. Labelled blank nodes are now
given in the concrete SPARQL syntax.
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1 _:b1 :name "Adam" .
2 _:b1 :email "me@adam.com" .
3 _:b1 :homepage "http://adam.com" .
4 _:b2 :name "Betty" .
5 _:b2 :email "betty@mail.com" .
6 _:b3 :name "Carol" .
7 _:b3 :phone "+43-1234-98765" .
8 _:b4 :name "Derek" .

Listing 2.13: Example RDF graph semantics.rdf

$P $name

_:b1 “Adam”
_:b2 “Betty”
_:b3 “Carol”
_:b4 “Derek”

(a) Set of solution map-
pings

$P $name

_:blank0 “Adam”
_:blank1 “Betty”
_:blank2 “Carol”
_:blank3 “Derek”

(b) Query result

Table 2.2: Results of first example

1. SELECT * FROM <semantics.rdf> WHERE { $P :name $name . }

The graph pattern ($P, :name, $name) evaluates to the set of solution
mappings shown in Table 2.2a. Because of the blank node renaming
the final query evaluation result differs in blank node labels (see Table
2.2b).

2. SELECT * FROM <semantics.rdf> WHERE { _:bp1 :name _:bp2 . }

The graph pattern (_:bp1, :name, _:bp2) evaluates to the set of solution
mappings shown in Table 2.3a. Since solution mappings containing
only blank node mappings are deleted from the final result, the final
result of this query is empty

3. SELECT * FROM <semantics.rdf> WHERE { _:bp1 :name _:bp2 . OPTIONAL

{ _:bp1 :email $E . } }

The graph pattern ((_:bp1, :name, _:bp2) OPT (_:bp1, :email, $E)) eval-
uates to the set of solution mappings shown in Table 2.4a. Solution
mappings containing only blank nodes are deleted completely from the
final result (see Table 2.4b).
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_:bp1 _:bp2

_:b1 “Adam”
_:b2 “Betty”
_:b3 “Carol”
_:b4 “Derek”

(a) Set of solution map-
pings

_:bp1 _:bp2

(b) Query result

Table 2.3: Results of second example

_:bp1 _:bp2 $E

_:b1 “Adam” “me@adam.com”
_:b2 “Betty” “betty@mail.com”
_:b3 “Carol”
_:b4 “Derek”

(a) Set of solution mappings

$E

“me@adam.com”
“betty@mail.com”

(b) Query result

Table 2.4: Results of third example

2.4.3 SPARQL Query Results XML Format

A format suited to exchange results of a SPARQL select or ask query is the
SPARQL Query Results XML Format[Beckett and Broekstra, 2008]. Results of
construct queries are RDF again.

The first child element of the root node with the name head, contains
the list of variables of the SPARQL SelectQuery. The second child, results,
contains a list of result elements, one for each solution mapping. Every
result element contains one binding element for each variable binding.

Example 2.12. Listing 2.14 shows the result of the select query in List-
ing 2.12, i. e., the result as shown in Table 2.1 on page 29. The head element
contains a list of the variable names used in the WhereClause. The results

element contains one result element for each SPARQL solution set. Each
result set contains a list of binding elements, one for each bound variable,
each containing the bound value.

Note that we will use this format later in chapter 3 and 4 to process the
results of a SPARQL engine.
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1 <?xml version="1.0"?>
2 <sparql xmlns="http://www.w3.org/2005/sparql-results#">
3 <head>
4 <variable name="name"/>
5 </head>
6 <results>
7 <result>
8 <binding name="name">
9 <literal>Alice</literal>

10 </binding>
11 </result>
12 <result>
13 <binding name="name">
14 <literal>Bob</literal>
15 </binding>
16 </result>
17 <result>
18 <binding name="name">
19 <literal>Charles</literal>
20 </binding>
21 </result>
22 </results>
23 </sparql>

Listing 2.14: SPARQL query results XML format

2.5 The XSPARQL Transformation Language

XSPARQL is a query language combining XQuery and SPARQL for transforma-
tions between RDF and XML. It was submitted as W3C member submission
[Polleres et al., 2009, Krennwallner et al., 2009, Lopes et al., 2009, Passant
et al., 2009].

The main usecases of XSPARQL are translating XML data to RDF and the
other way round. Concrete example use cases are described in [Passant et al.,
2009]. XSPARQL combines the advantages of XQuery and SPARQL making it
possible to use a rich set of built-in functions (from XPath 2.0) and nested
queries while being independent of the concrete RDF serialisation syntax.

Example 2.13. The query in Listing 2.15 converts the RDF data of Listing 2.2
to the example XML data in Listing 1.1. This transformation is an example
for an RDF to XML conversion also called lowering.

2.5.1 Syntax of XSPARQL

XSPARQL is an XQuery extension incorporating constructs from SPARQL.
There are two main extensions that lead XQuery to XSPARQL are the SparqlFor-
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1 prefix foaf: <http://xmlns.com/foaf/0.1/>
2 <relations>
3 { for $Person $Name
4 from <relations.rdf>
5 where { $Person foaf:name $Name }
6 order by $Name
7 return
8 <person name="{$Name}">
9 { for $FName

10 from <relations.rdf>
11 where { $Person foaf:knows $Friend .
12 $Friend foaf:name $FName . }
13 return <knows>{$FName}</knows>
14 </person>
15 }
16 </relations>

Listing 2.15: Simple XSPARQL query

[33] FLWORExpr ::= (ForClause | LetClause | SparqlForClause )+
WhereClause? OrderByClause? ReturnClause

[33a] ReturnClause ::= "return" ExprSingle | "construct"
ConstructTemplate

[33b] SparqlForClause ::= "for" "distinct"? ("$" VarName ("$" Varname)*
| "*") DatasetClause "where" GroupGraphPattern SolutionModifier

Listing 2.16: XSPARQL grammar productions Polleres et al. [2009]

Clause and the ConstructTemplate. The SparqlForClause allows syntax agnostic
access to RDF data. The ConstructTemplate provides a concise way to specify
RDF result graphs. [Polleres et al., 2009]

2.5.1.1 SparqlForClause

The SparqlForClause can be used whenever an XQuery for expression can be
used. It can consist of up to five separate clauses (see also Listing 2.16):

1. The for clause itself is the same as a SPARQL select clause with the
only difference that the starting keyword is for instead of select.

2. The DatasetClause consist of the static declaration of RDF data sources.
Additionally XQuery variables containing dataset URLs are allowed
here.

3. The mandatory where clause is based on the SPARQL where clause.
It also allows using XQuery variables whenever SPARQL would allow
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variables.

4. Order of results is controlled with order by as in SPARQL. The syntax
for slicing of results, meaning limiting the number of returned results
and the corresponding offset, both known from SQL, is the same as for
SPARQL.

2.5.1.2 ConstructTemplate

The second extension object of SPARQL, the ConstructTemplate, can be used
instead of an XQuery return expression. Additionally to the terms and
variables already allowed in a SPARQL ConstructTemplate, RDF terms can be
built dynamically.

In analogy to the computed constructors of XQuery (see [Boag et al., 2007,
Section 3.7.3]), XSPARQL allows constructed RDF terms. As computed construct-
ors are used to dynamically build nodes in a XML result tree, constructed
RDF terms can be used to dynamically build RDF terms in an RDF graph.
To minimise code obfuscation, a concise syntax is provided for such con-
structs. This is especially useful since all functions defined for XQuery/XSLT
in [Malhotra et al., 2007] and even user defined functions are available in
these templates. Since we are extending standard SPARQL new syntax is
introduced for constructing the three different types of RDF terms: IRIs, blank
nodes and literals.

Constructed IRIs Normally IRIs in SPARQL are enclosed in angle brackets.
To create such an IRI in XSPARQL an expression needs to be embedded
in angle brackets without any whitespace between the angle brackets and
the curly braces: <{Expr}>. As a second format of IRIs a Qualified Name
(QName), known from XML, can be used. It consists of a namespace prefix
followed by a colon and the local part of the URI. To create such a URI in
XSPARQL an EmbeddedExpression is allowed for both parts, namespace prefix
and local part, e. g., foaf:{Expr}.

Constructed Blank Nodes To refer to blank nodes outside of the current
context, labelled blank nodes can be constructed by giving the usual blank
node label prefix _: immediately followed by an XQuery expression surroun-
ded by curly braces.

Constructed Literals Different RDF literals can be created at runtime using
different syntaxes. The most flexible one is the usage of a standard enclosed
expression using curly braces. The optional datatype and language identifiers
can also be created dynamically.
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Example 2.14. The following incomplete example demonstrates these three
variants:

1 declare variable $var := "1";

2 fn:concat("Alice",$var),

3 "Alice"^^{fn:concat(":",$var)},

4 "Alice"@{fn:concat("e","n")}

The examples would be evaluated to the following values:
1 ("Alice1","Alice"^^:1,"Alice"@en)

2.5.1.3 SPARQL-style Queries

Additionally to extended XQuery queries, it is also possible to formulate
SPARQL construct queries and use some features provided by XQuery. The
extended WhereClause, which can be used in SPARQL-style queries as well as
the extended construct clause were already described above.

2.5.1.4 Syntactic Restrictions

To avoid ambiguities and to make implementations simpler, the following
syntactic restrictions are enforced in respect to XQuery:

• Variable names must not contain underscores “_”, since they are used
to make internal variables guaranteed unique.

• Other identifiers (namespace prefixes, function identifiers and blank
node identifiers) must not start with an underscore, since these are also
used internally.

• XQuery comments are not allowed, use XSPARQL comments instead,
since the XQuery comment token “(:” could be confused with the start
of some SPARQL filter expressions.

• Pragmas are not allowed, since the hash sign is used for XSPARQL
comments.

Additionally some syntactic restrictions are applied to make the SPARQL
parts compatible to XQuery:

• All keywords have to be in lowercase, since XQuery is case sensitive.

• Only construct queries allowed, not select ask or describe.

• Variables must start with ’$’ since ’?’ is not allowed in XQuery as it
would be in SPARQL.

Although this section contains already a lot of details of the XSPARQL syntax,
Appendix A shows the full XSPARQL grammar for reference.
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2.5.2 Semantics of XSPARQL

The semantics of XSPARQL is defined on top of the XQuery semantics defin-
ition while using the same mechanism: First reducing the language to a
core language by mapping rules and then defining the semantics on top of
that. Since the XQuery semantics itself is already defined only new constructs
extending XQuery have to be added. The SPARQL semantics is imported
and glued in where needed. This semantics definition is a summary of the
XSPARQL semantics in [Akhtar et al., 2007].

The new normalisation mapping rules J·KExpr′ inherit all the standard
XQuery J·KExpr mapping rules and extends them.

2.5.2.1 FLWOR’ Expressions

Additionally to XQuery standard FLWOR expressions, a new construct, the
SparqlForClause was introduced in the XSPARQL syntax.

Normalisation The XSPARQL semantics definition starts with normalisation
rules for that new SparqlForClause.

Rule 2.19.

s
for $VarName1 · · · $VarNamen DatasetClause
where GroupGraphPattern SolutionModifier ReturnClause

{

Expr′

==
u

wwwwwwwwwwww
v

let $aux_queryresult :=s
$VarName1 · · · $VarNamen DatasetClause
where GroupGraphPattern SolutionModifier

{

SparqlQuery
for $aux_result in $aux_queryresult//sparql_result:result

JVarName1KSparqlResult
...
JVarNamenKSparqlResult

ReturnClause

}

������������
~

Expr

The J·KSparqlQuery rule is an auxiliary mapping rule taking care of SPARQL
query parts.

s
$VarName1 · · · $VarNamen DatasetClause
where GroupGraphPattern SolutionModifier

{

SparqlQuery
==

fs:sparql


u

v
fn:concat("SELECT $VarName1 · · · $VarNamen

DatasetClause where { ",
fn:concat(GroupGraphPattern), " } SolutionModifier")

}

~

Expr′


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The fs:sparql function is an abstract function returning a SPARQL query
result XML document [Beckett and Broekstra, 2008]. They only parameter is
a SPARQL query given as a single string. Using the XML Schema definition
of [Beckett and Broekstra, 2008] yields to the following definition:

1 fs:sparql($query as xs:string) as document-node(schema-element(

sparql_result:sparql))

For each variable in each SPARQL result, four variables are created and
initialised as defined by J·KSparqlResult

Rule 2.20.

J$VarNameKSparqlResult
==

let $VarName_Node := $aux_result/sparql_result:binding[@name="VarName"]
let $VarName := data($VarName_Node/∗)
let $VarName_NodeType := name($VarName_Node/∗)
let $VarName_RDFTerm :=
if($VarName_NodeType = "literal") then fn:concat("""", $VarName, """")
else if ($VarName_NodeType = "bnode") then fn:concat("_:", $VarName)
else if ($VarName_NodeType = "literal") then fn:concat("<", $VarName, ">")
else ""

Static Typing All static typing rules are inherited from the XQuery se-
mantics without change.

Dynamic Evaluation The function fs:sparql evaluates the first parameter as
a SPARQL query according to the SPARQL semantics:

The built-in function fs:sparql applied to Value1 yields Value
dynEnv ` function fs:sparql with types xs:string on values (Value1) yields Value

If the function parameter is not a valid SPARQL query or if another error
occurs at runtime, the function itself yields an error:

Value1 cannot be evaluated according to SPARQL semantics

dynEnv ` function fs:sparql with types xs:string on values (Value1) yields fn:error()

One feature still not defined is the usage of variables in a SPARQL Group-
GraphPattern. Variables are either bound by another SparqlForClause earlier, by
another XQuery construct such as a FLWOR expression or they are left to by
bound the GroupGraphPattern. If a variable is already bound, it is replaced by
its value. Otherwise it is replaced with its own name, thus leaving evaluation
to the SPARQL engine:
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Rule 2.21. When a variable was bound by a SparqlForClause its RDF term
representation is used.

statEnv ` $VarName_RDFTerm bound
statEnv ` J$VarNameKVarSubst = J$VarName_RDFTermKExpr

Rule 2.22. When a variable was bound by an XQuery expression, it is replaced
by its value.

statEnv ` $VarName bound statEnv ` not($Varname_RDFTerm bound)
statEnv ` J$VarNameKVarSubst = J$VarNameKExpr

Rule 2.23. When a variable is currently not bound, it is replaced by its name
as string.

statEnv ` not($VarName bound) statEnv ` not($Varname_RDFTerm bound)
statEnv ` J$VarNameKVarSubst = J"$VarName"KExpr

FLWOR normalisation To be able to handle blank nodes in construct ex-
pressions, it is necessary to create a new position variable for for expressions
if none is given.

Rule 2.24. First for expressions are normalised using the mapping rules of
[Draper et al., 2007, Section 4.8]. After that a new (previously unbound)
variable is introduced as position variable. To ensure that the new variable
is indeed unbound before, it is prefixed with an underscore relying on the
constraint underscores are not allowed as first character of variable names
anymore (see XSPARQL syntax in Section 2.5.1).

s
for $VarName OptTypeDecl in Expr
return FormalReturnClause

{

Expr′

==

for $VarName OptTypeDecl at $_VarName_Pos in JExprKExpr′

return JFormalReturnClauseKExpr′

Rule 2.25. Simple let expressions are normalised according to the XQuery
semantics.

s
let $VarName OptTypeDecl := Expr
return FormalReturnClause

{

Expr′

==

let $VarName OptTypeDecl := JExprKExpr′

return JFormalReturnClauseKExpr′
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2.5.2.2 CONSTRUCT Expressions

The second new grammar object introduced in the syntax section above, is
the ConstructTemplate. It provides a Turtle-like syntax to specify RDF output.

Rule 2.26. A ConstructTemplate is mapped to a standard XQuery ReturnClause:

Jconstruct ConstructTemplate’KExpr′

==r
return fn:concat(JConstructTemplate’KSubjPredObjList)

z

Expr

The new auxiliary mapping rules J·KSubjPredObjList, J·KSubject, J·KPredObjList and
J·KObjList are used to rewrite variables and blank nodes contained in the
ConstructTemplate.

Definition 2.10 (New Judgements). To ensure that the result is indeed a valid
RDF graph built of valid RDF triples, the terms have to be tested for validity.
Therefore we introduce three new judgements:

expr is valid subject is true if expr is bound and if it is either a blank node
or an IRI, otherwise it is false.

expr is valid predicte is true if expr is bound and if it is an IRI, otherwise
it is false.

expr is valid object is true if expr is bound and if it is either a blank node,
an IRI or a literal, otherwise it is false.

Using these new judgements we can now define the rules needed to build
RDF triples.

Rule 2.27.

statEnv ` VarOrTerm′ is valid subject

statEnv `

q
VarOrTerm′ PropertyListNotEmpty′

y
SubjPredObjList

==t
fn:concat(

q
VarOrTerm′

y
Subject ,

q
PropertyListNotEmpty′

y
PredObjList)

|

Expr

Rule 2.28.

statEnv ` Verb is valid predicate
statEnv ` Object1 is valid object

...
statEnv ` Objectn is valid object

statEnv `

q
Verb Object1, . . . , Objectn

y
PredObjList

==r
fn:concat(JVerbKExpr′ , ",",

q
Object1

y
Expr′ , ",", . . . , ",",

q
Objectn

y
Expr′)

z

Expr
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If any of those criteria fails, the triple containing it may be invalid, and
would have to be removed from the result. The following rule is an example
of such an invalidation rule:

Rule 2.29.

statEnv ` not(VarOrTerm is valid subject)
statEnv ` JVarOrTerm PropertyListNotEmptyKSubjPredObjList = J” ”KExpr

One case to be careful about are labelled blank nodes in a ConstructTem-
plate. Labelled blank nodes cannot be output verbatim, but a unique blank
node label has to be created for each evaluation of the ConstructTemplate. To
truly create such unique labels, we decorated all the for expressions, and
implicitly the SparqlForClause as well, with positional variables. We introduce
a new static environment component called statEnv.posVars holding all in-
context positional variables. The labels are then built by concatenating the
positional variables, with the underscore as delimiter in between, to the static
blank node label already given in the ConstructTemplate.

statEnv ` statEnv.posVars = VarName1_Pos, . . . , VarNamen_Pos

statEnv ` J_ : BnodeNameKBNodeSubst =
Jfn:concat(”_ : ”, BNodeName, ”_”, VarName1_Pos, . . . , VarNamen_Pos)KExpr

2.5.2.3 SPARQL Filter Operators

SPARQL defines its own functions allowed in a filter expression. In XSPARQL
these functions are additionally implemented as standard XQuery functions:

1 BOUND($A as xs:string) as xs:boolean

2 isIRI($A as xs:string) as xs:boolean

3 isBLANK($A as xs:string) as xs:boolean

4 isLITERAL($A as xs:string) as xs:boolean

5 LANG($A as xs:string) as xs:string

6 DATATYPE($A as xs:string) as xs:anyURI

The semantics of these functions is defined as follows:

Rule 2.30. The BOUND function returns fn:true if its argument, a variable,
is bound to a value, and fn:false otherwise:

statEnv ` $VarName_Node bound

statEnv ` JBOUND($VarName)KExpr′ =

s
if(fn:empty($VarName_Node))
then fn:false() else fn:true()

{

Expr
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Rule 2.31. The isIRI function returns fn:true if its argument, a variable, is
of type IRI, and fn:false otherwise:

statEnv ` $VarName_NodeType bound

statEnv `

JisIRI($VarName)KExpr′

=s
if(fn:empty($VarName_NodeType = "uri"))
then fn:false() else fn:true()

{

Expr

Rule 2.32. The isBLANK function returns fn:true if its argument, a variable,
is a blank node, and fn:false otherwise:

statEnv ` $VarName_NodeType bound

statEnv `

JisBLANK($VarName)KExpr′

=s
if(fn:empty($VarName_NodeType = "blank"))
then fn:false() else fn:true()

{

Expr

Rule 2.33. The isLITERAL function returns fn:true if its argument, a variable,
is an RDF literal, and fn:false otherwise:

statEnv ` $VarName_NodeType bound

statEnv `

JisLITERAL($VarName)KExpr′

=s
if(fn:empty($VarName_NodeType = "literal"))
then fn:false() else fn:true()

{

Expr

Rule 2.34. The LANG function returns the language tag of a literal annotated
with a language tag:

statEnv ` $VarName_Node bound
statEnv ` JLANG($VarName)KExpr′ = Jfn:string($VarName_Node/@xml:lang)KExpr

Rule 2.35. The DATATYPE function returns the datatype tag of a typed
literal:

statEnv ` $VarName_Node bound
statEnv ` JDATATYPE($VarName)KExpr′ = Jfn:string($VarName_Node/@datatype)KExpr
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Chapter 3

Towards XSPARQL++

The last chapter introduced XSPARQL and the underlying query languages
XQuery and SPARQL in detail. In this chapter we will describe XSPARQL
extensions and refinements along with their semantics. The original XSPARQL
language as introduced in the last chapter is referred to as XSPARQL. The
extensions and refinements presented in this chapter lead to a new language
we will call XSPARQL++.

First two new features, Constructed Dataset and Dataset Scoping, are ex-
plained with examples. Constructed Dataset provides a new way to formulate
complex XSPARQL queries. Dataset Scoping gives a new interpretation of
nested SparqlForClauses with an adapted semantics that returns more intuitive
results for nested queries than the original XSPARQL.

In the second part of this chapter, a new XSPARQL semantics definition,
based on the original XSPARQL semantics, is presented. Besides a formal
definition of Constructed Dataset and Dataset Scoping it contains several
detail improvements.

3.1 Constructed Dataset

This extension allows to manually optimise XSPARQL queries by creating an
RDF graph containing only relevant triples and thus making query evaluation
more efficient. For instance, this allows for a more concise way to formulate
queries on XML data using a lot of internal references, by first converting it
to a temporary RDF graph.

Constructed Datasets can also be seen as closely related to database views.
Both allow to access dynamically built data sources (graphs for XSPARQL,
tables for relational databases). They can simplify queries, provide aggregated
data as source not only as result and thus make queries more maintainable.
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Unfortunately SPARQL allows only IRIs in the DatasetClause and no vari-
ables or subqueries1. Any implementation allowing variables as datasets,
while using a SPARQL engine to evaluate the query, must make the variable
value retrievable at a specific URL.

Although XSPARQL syntactically allowed variables in a DatasetClause as
well, the query would throw an error if the variable would not evaluate to an
URL. In XSPARQL++ we allow also variables to be bound to an RDF graph,
i. e. created by a ConstructClause. The following Listing shows a schematic
XSPARQL++ query using the Constructed Dataset feature:

1 let $tempGraph := ...

2 construct { ... }

3 for *
4 from $tempGraph

5 where { ... }

6 return ...

Section 3.6.4 will present the semantics specification of the Constructed
Dataset feature.

Example 3.1. Martín and Gutierrez [2009] presented a problem being beyond
the expressive power of SPARQL alone but not XSPARQL: create an RDF graph
from DBLP [DBLP] data while returning the number of co-authored papers
for each pair of co-authors. This problem, restricted to co-authors of a single
person (in our example, Axel Polleres), can be formulated as an XSPARQL
query using Constructed Datasets as shown in Listing 3.1.

The intermediary dataset $ds, created from line 4 to 12, contains the
co-authors of each publication of Axel Polleres. The $allauthors variable
is a sequence of all the persons Axel Polleres wrote a paper with, created
from the previously Constructed Dataset $ds. By iterating over all pairs of
authors, the number of all co-authored publications is counted ($commonPubs)
and three triples documenting that are created for the end result of the query,
under the condition that the number of $commonPubs is bigger than 0.

3.2 Dataset Scoping

When creating XML documents (e. g. from RDF sources) some kind of grouping
is needed to generate the XML tree structure. Some examples of grouping
in an XML document: a list of employees grouped by departments, a list of
products grouped by buyers or a list of machine components grouped by
manufacturer. Since grouping in this sense is not a feature of SPARQL so
far, grouping has to be implemented externally. When working with RDF

1This might change with SPARQL 1.1[Harris and Seaborne, 2010]
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1 prefix foaf: <http://xmlns.com/foaf/0.1/>
2 prefix dc: <http://purl.org/dc/elements/1.1/>
3

4 let $ds := for *
5 from <http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres>
6 where { $pub dc:creator [] }
7 construct { {
8 for *
9 from $pub

10 where { $p dc:creator $o . }
11 construct {$p dc:creator <{$o}>}
12 } }
13

14 let $allauthors := for distinct $o
15 from $ds
16 where {$p dc:creator $o}
17 order by $o
18 return concat("<",$o,">")
19

20 for $auth at $auth_pos in $allauthors
21 for $coauth in $allauthors[position() > $auth_pos]
22 let $commonPubs := count( {
23 for $pub
24 from $ds
25 where { $pub dc:creator $auth, $coauth }
26 return $pub }
27 )
28 where ($commonPubs > 0)
29 construct { [ :author1 $auth;
30 :author2 $coauth;
31 :commonPubs $commonPubs ] }

Listing 3.1: Number of co-authored publications for each pair of co-authors

data, nested queries provide an intuitive way to implement grouping. In this
section we will present an intricate problem when dealing with such nested
queries in XSPARQL and its solution by giving the query author control over
the scope of datasets. We call this new feature Dataset Scoping.

3.2.1 Nested SPARQL FOR Clauses

Working with nested queries can lead to unexpected results. An example
query (see Listing 3.2, originally presented by [Passant et al., 2009]) showing
the effect (grouping the relations between persons by persons) is given now:
For each person in a FOAF file, get a list of the associated friends in XML.

If we execute this query on the simple FOAF file shown in Listing 3.3,
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1 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
2 <relations>
3 { for $Name from <http://xsparql.deri.org/data/relations.rdf>
4 where { $Person foaf:name $Name }
5 order by $Name
6 return <person name="{$Name}">
7 { for $FName from <http://xsparql.deri.org/data/relations.rdf>
8 where { $Person foaf:knows $Friend .
9 $Person foaf:name $Name.

10 $Friend foaf:name $FName. }
11 return <knows> { $FName }</knows>
12 }
13 </person>
14 }
15 </relations>

Listing 3.2: FOAF lowering

1 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
2 [] foaf:name "Stefan";
3 foaf:homepage <http://www.stefandecker.org/> ;
4 foaf:knows [foaf:name "Bob"] .
5 [] foaf:name "Stefan";
6 foaf:homepage <http://stefanbischof.at/> ;
7 foaf:knows [foaf:name "Alice"] .

Listing 3.3: FOAF file about two different persons with the same name

containing two persons with the same name, the result is unexpected (see
Listing 3.4). In contrast to the source data in Listing 3.3 where each person
named “Stefan” knows exactly one other person, the result contains two
persons with the same name, having exactly the same two friends. The
problem is that the foaf:name object, used as a join variable here, is not
necessarily unique for different persons. What we actually need, is to join
over distinct persons regardless of their potentially coinciding names.

3.2.2 First Improvement

To improve the query we could try to use the $Person variable only for joining
the persons with their friends. Listing 3.5 shows such a query created by
modifying the query of Listing 3.2 by omitting the triple pattern containing
$Name of the inner SPARQL query (line 10). See Listing 3.6 for the evaluation
result.

This approach will not give the desired result either, because blank nodes
labels are only valid within the solution set of a single SPARQL query, but,
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1 <relations>
2 <person name="Alice"/>
3 <person name="Bob"/>
4 <person name="Stefan">
5 <knows>Bob</knows>
6 <knows>Alice</knows>
7 </person>
8 <person name="Stefan">
9 <knows>Bob</knows>

10 <knows>Alice</knows>
11 </person>
12 </relations>

Listing 3.4: Unexpected result of the query in Listing 3.2

1 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
2 <relations>
3 { for $Person $Name from <http://stefanbischof.at/xsparql/relations.rdf>
4 where { $Person foaf:name $Name }
5 order by $Name
6 return <person name="{$Name}">
7 { for $FName from <http://stefanbischof.at/xsparql/relations.

rdf>
8 where { $Person foaf:knows $Friend .
9 $Friend foaf:name $FName. }

10 return <knows> { $FName }</knows>
11 }
12 </person>
13 }
14 </relations>

Listing 3.5: Improved FOAF Lowering

when used in a nested query, treated as variables, therein. Thus it is im-
possible to refer to a specific blank node from the outer query result in a
nested SPARQL query, because blank nodes reused in a second query are
handled like any blank node as a sort of existential quantifier: Such a blank
node can be “bound” to any subject or object term. In our example this
behaviour results in everybody knowing Bob and Alice because for every
person SPARQL can find two triples of the form: Somebody (the blank node
bound to $Person) knows somebody else (Alice and Bob).

Evaluation in Detail

In this section we show how the SPARQL parts of Listing 3.5 are evaluated.
The outer SparqlForClause, lines 3–5, is rewritten to the SPARQL query in
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1 <relations>
2 <person name="Alice">
3 <knows>Bob</knows>
4 <knows>Alice</knows>
5 </person>
6 <person name="Bob">
7 <knows>Bob</knows>
8 <knows>Alice</knows>
9 </person>

10 <person name="Stefan">
11 <knows>Bob</knows>
12 <knows>Alice</knows>
13 </person>
14 <person name="Stefan">
15 <knows>Bob</knows>
16 <knows>Alice</knows>
17 </person>
18 </relations>

Listing 3.6: Unexpected result of query improvement in Listing 3.5

1 select $Name
2 from <relations.rdf>
3 where { $Person foaf:name $Name }
4 order by $Name

Listing 3.7: SPARQL outer query of Listing 3.5

Listing 3.7. Since all variables are unbound the translation is straightforward.
The query results in Table 3.1a on page 53 show four solution mappings.
Although two solution mappings share the same binding for $Name, $Person
is bound to four different blank nodes thus differentiating between all four
persons.

Therefore the ReturnClause in lines 6–12 of Listing 3.5 is evaluated once for
each of these solution mappings. In the first iteration the $Person variable of
the inner SparqlForClause is replaced by its binding value, the first blank node.
This rewriting leads to the rewritten SPARQL query shown in Listing 3.8.
Evaluating this query leads to the results shown in Table 3.1b. Although
Alice, identified by _:b1, has no outgoing foaf:knows relations, two solution
mappings, are returned. During query evaluation all blank nodes of the
WhereClause are mapped to RDF terms of the dataset. Since two blank nodes
can be mapped to the blank node _:b1 of the graph pattern, two solution
mappings are returned.

The only difference of the second iteration to the first is the different
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1 select $FName
2 from <relations.rdf>
3 where { _:b1 foaf:knows $Friend.
4 $Friend foaf:name $FName. }

Listing 3.8: First SPARQL inner query of Listing 3.5

$Person $Name

_:b1 “Alice”
_:b2 “Bob”
_:b3 “Stefan”
_:b4 “Stefan”

(a) Result of Listing 3.7

$Friend $FName

_:c1 “Alice”
_:c2 “Bob”

(b) Result of Listing 3.8

$Friend $FName

_:d1 “Alice”
_:d2 “Bob”

(c) Result of Listing 3.9

Table 3.1: SPARQL results

blank node label. But since the blank node is mapped to an RDF term again
the result shown in Table 3.1c is the same as for the first iteration.

The same applies for the last two iterations where the SparqlForClause is
evaluated to the same solution set modulo blank node labels. This results
lead to the strange result shown in Listing 3.6 where every person knows
Alice and Bob.

In summary, if a variable v of a SparqlForClause SO is bound to a blank
node and v is reused in the WhereClause of the inner SparqlForClause SI , then
v in SI is not referring to the same blank node as in SO, but it is used as a sort
of variable during evaluation of SI . This behaviour may be unforeseeable for
a query author, since it is not always known which variables will actually be
bound to blank nodes.

3.2.3 Working Improvement – Dataset Scoping

To address this issue we introduce an extension called “Dataset Scoping” to
XSPARQL, allowing to join over variables bound to blank nodes.

Firstly, by enlarging the active dataset (or dataset scope) from one Sparql-
ForClause to several SparqlForClauses. This ensures that blank nodes returned
by the outer query have the same identifiers in the active dataset of the inner
query: Dataset Scoping retains the scoping graph after the evaluation of
the outer query, and, instead of creating a new one as SPARQL semantics
specifies, reuses this scoping graph for the following evaluation of the inner
SparqlForClause.
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1 select $FName
2 from <relations.rdf>
3 where { _:b2 foaf:knows $Friend.
4 $Friend foaf:name $FName. }

Listing 3.9: Second SPARQL inner query of Listing 3.5

1 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
2 <relations>
3 { for $Person $Name from <http://stefanbischof.at/xsparql/relations.rdf>
4 where { $Person foaf:name $Name }
5 order by $Name
6 return <person name="{$Name}">
7 { for $FName
8 where { $Person foaf:knows $Friend .
9 $Friend foaf:name $FName. }

10 return <knows> { $FName }</knows>
11 }
12 </person>
13 }
14 </relations>

Listing 3.10: Improved Query using Dataset Scoping

Secondly, we treat blank nodes from the active dataset as constants, such
that they will match like URIs or literals, instead of being treated like variables
or blank nodes that are syntactically appearing in the query.

Dataset Scoping can be controlled syntactically: If the outer SparqlFor-
Clause specifies a DatasetClause but the inner SparqlForClause does not, Dataset
Scoping is enabled, i. e., it is assumed that both nested queries are over the
same active dataset. See Listing 3.10 for the example query using Dataset
Scoping. Listing 3.11 shows the resulting XML document.

If the inner SparqlForClause contains a DatasetClause, traditional XSPARQL
semantics without Dataset Scoping is applied, i. e., the evaluation result
would be the XML document of Listing 3.6.

A formal description of the new semantics is given in Section 3.5. An
implementation approach is described in Section 4.3.3.

3.3 XSPARQL++ Semantics Introduction

For the formal description of XSPARQL++ we use the notation of the XQuery
formal semantics specification [Draper et al., 2007] (introduced earlier in
Section 2.3.3). To define the XSPARQL++ semantics we extend the XQuery
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1 <relations>
2 <person name="Alice" />
3 <person name="Bob" />
4 <person name="Stefan">
5 <knows>Bob</knows>
6 </person>
7 <person name="Stefan">
8 <knows>Alice</knows>
9 </person>

10 </relations>

Listing 3.11: Result of Listing 3.10

define type RDFTerm {
uri | bnode | literal }

define type Binding {
element variable of type xs:string,
element term of type RDFTerm }

define type PatternSolution {
element bindings of type Binding* }

define type RDFTriple {
element subject of type RDFTerm,
element predicate of type RDFTerm,
element object of type RDFTerm }

define type RDFGraph {
element RDFTriples of type RDFTriple* }

define type RDFDataset {
element defaultGraph of type RDFGraph,
element RDFNamedGraphs of type RDFNamedGraph* }

define type RDFNamedGraph {
element name of type xs:string,
element graph of type RDFGraph }

Listing 3.12: XSPARQL++ type definitions

semantics by two new objects, SparqlForClause and ConstructClause. Both were
introduced in the syntax description in 2.5.1.

We extend the XQuery and XPath Data Model (XDM) [Fernández et al., New types

2007] by the following new types:

RDFTerm consisting of three types, namely uri, bnode, and literal, is
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fs:bnode($arg as xs:string) as bnode
fs:literal($arg as xs:string) as literal
fs:literal($arg as xs:string, $datatype as xs:anyURI) as literal
fs:literal($arg as xs:string, $lang as xs:string) as literal
fs:uri($arg as xs:string) as uri
fs:uri($arg as xs:anyURI) as uri

Listing 3.13: Constructor functions for RDFTerms

fs:bnode($arg as xs:string) as bnode {
validate { <bnode>$arg</bnode> }

}

Listing 3.14: Implementation of bnode constructor function

used for typing SPARQL variables. The three different RDF term
types are introduced by the SPARQL Results XML Format [Beckett
and Broekstra, 2008], while the type RDFTerm is equivalent to
the binding of the SPARQL Results XML Format [Beckett and
Broekstra, 2008].

Binding is the type of a pair, consisting of a variable name and its associ-
ated value as RDFTerm.

PatternSolution is the type of a sequence of Bindings. It represents a
SPARQL query solution mapping, i. e., a SPARQL query result.

RDFTriple is defined as a sequence of three RDFTerms: subject, predicate,
and object.

RDFGraph is the type of construct expressions and consists of a sequence
of RDFTriples.

RDFDataset is the type of the DatasetClauses and defined as a default graph
followed by a sequence of RDFNamedGraphs. An RDFNamedGraph

consists of a name and an RDFGraph.

Listing 3.12 shows the formal definition of the new types, using XDM notation.
To define the XSPARQL++ semantics we extend XQuery’s J·KExpr normalisation
rules.

Furthermore we introduce constructor functions for the three types uri,
bnode, and literal. Listing 3.13 shows the static type signature of the new
constructor functions, while Listing 3.14 shows the implementation of the
constructor function for bnode. The other constructor functions are defined
analogously.
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After a short description of query prolog processing, the following sec-
tions we will give normalisation rules, the static, and the dynamic semantics
of the two new objects SparqlForClause and ConstructTemplate.

3.4 Query Prolog

Namespace declarations in SPARQL syntax are converted to XQuery equival-
ents by normalisation rules. This rewriting allows the query author to use
both XQuery and SPARQL namespace declarations for the query prolog.

Jprefix NCName: <URILiteral>KExpr
==

Jdeclare namespace NCNAME = URILiteral ;KExpr

Jprefix : <URILiteral>KExpr
==

Jdeclare default element namespace URILiteral ;KExpr

Jbase <URILiteral>KExpr
==

Jdeclare base-uri URILiteral ;KExpr

When the output format is RDF in Turtle syntax, the namespace declar-
ations are prepended to the output. Although Turtle allows namespace
declarations not only in the beginning of an RDF graph, the XSPARQL rewrit-
ing emits them before all the RDF triples.

3.5 FLWOR’ Expression

The first part of a FLWORExpr is either a SparqlForClause, a standard XQuery
ForClause, or a standard XQuery LetClause. If it is one of the standard XQuery
clauses, it is normalised similarly as defined in Rule 2.24 and Rule 2.25. The
exact new mapping rules are given below. The rest of this section describes
the semantics of the SparqlForClause in detail. As for XQuery expressions,
the semantics of the SparqlForClause is defined in three steps: normalisation,
static typing, and dynamic evaluation.

3.5.1 Normalisation

In the first step FLWOR’ expressions are normalised.
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3.5.1.1 FOR *

The function vars(GroupGraphPattern) returns the list of previously unbound vars

variables occurring in the GroupGraphPattern. If the GroupGraphPattern con-
tains no previously unbound variables vars returns a random variable name.
This measure just ensures that the rewritten query is still syntactically correct
because the result of the whole SparqlForClause will be empty anyways.

Rule 3.1. A star instead of a list of variables in a SparqlForClause is handled
like a star in a SPARQL SelectClause by returning all bound variables of the
WhereClause.

u

wwww
v

for *
DatasetClause
where GroupGraphPattern
SolutionModifier
ReturnClause

}

����
~

Expr
==

u

wwww
v

for vars(GroupGraphPattern)
DatasetClause
where GroupGraphPattern
SolutionModifier
ReturnClause

}

����
~

Expr

Rule 3.1 reduces the case where a star occurs in the for part of a Sparql-
ForClause to the general case of a list of variables.

3.5.1.2 FLWOR Expressions

Plain XQuery FLWOR expressions are normalised in XSPARQL++ similarly as
in XSPARQL (see Rules 2.24 and 2.25 in Section 2.5.2).

Rule 3.2. ForClauses are decorated with a positional variable after being
normalised to XQuery Core.

u
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v

for $VarName1 OptTypeDeclaration1 OptPositionalVar1 in Expr1
. . . ,

$VarNamen OptTypeDeclarationn OptPositionalVarn in Exprn
FormalReturnClause

}

��
~

Expr
==

for $VarName1 OptTypeDeclaration1q
OptPositionalVar1

y
PosVar in

q
Expr1

y
Expr return

. . .
for $VarNamen OptTypeDeclarationnq
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Exprn
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Expr return

JFormalReturnClauseKExpr
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for $x in ("red", "green", "blue
"),

$y at $position-of-y in ("
light", "dark")

return fn:concat($y, " ", $x)

Listing 3.15: Normalisation
example before rewriting

for $x at $_x_pos in ("red", "
green", "blue"),

$y at $position-of-y in ("
light", "dark")

return fn:concat($y, " ", $x)

Listing 3.16: Normalisation of
Listing 3.15

Rule 3.3. The new normalisation subrule J·KPosVar introduces a new positional
variable if none is given. We assume a new position variable, distinct from
any variable in scope, and represented by the formal semantics variable
$fs:new (cf. [Draper et al., 2007, Section 4.12.6]).

JKPosVar == at $fs:new

Rule 3.4. If a positional variable is present, then it is left unchanged.

Jat $PosVarKPosVar == at $PosVar

The new rule J·KPosVar therefore ensures that every ForClause contains a
positional variable. These positional variables are needed for the semantics
definition of the ConstructTemplate below.

Furthermore we assume a new static environment component called
statEnv.posVars, holding all positional variables of the current scope, i. e., the
variables defined in an OptPositionalVar of every ForClause.

Example 3.2. The example query in 3.15 creates a list of colour names. The
result of the query would be: light red, dark red, light green, dark green,

light blue, dark blue. Listing 3.16 shows the normalisation of the XSPARQL
query in 3.15 by adding position variables to the one for loop which is
missing one.

LetClauses are normalised exactly as in XQuery.

The semantics of normalised SparqlForClauses will now be defined by
means of static type analysis rules (Section 3.5.2) and dynamic evaluation
rules (Section 3.5.3).

3.5.2 Static Type Analysis

Rule 3.5. The variables of the SparqlForClause are statically typed as RDFTerm.
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statEnv ` VarName1 of var expands to Variable1
...

statEnv ` VarNamen of var expands to Variablen

statEnv + varType

 Variable1 ⇒ RDFTerm;
· · · ;

Variablen ⇒ RDFTerm

 ` ReturnExpr : Type1

statEnv `
for $VarName1 · · · $VarNamen DatasetClause
where GroupGraphPattern SolutionModifier
return ReturnExpr : Type1∗

The static analysis rule of the SparqlForClause without an explicit dataset
is defined analogously.

3.5.3 Dynamic Evaluation

For defining the dynamic evaluation semantics of the SparqlForClause we first
introduce a new environment component and two new functions.

We introduce a dynamic environment component dynEnv.activeDatasetactiveDataset

which holds the dataset of a SparqlForClause. The activeDataset component
is initially empty or set by the system environment. For SparqlForClauses
containing a DatasetClause, the dataset is assigned to the activeDataset com-
ponent. This measure allows nested SparqlForClauses to reuse a dataset of an
enclosing SparqlForClause and is therefore part the Dataset Scoping feature
implementation.

As interface to SPARQL we introduce the new function fs:sparql. It eval-fs:sparql

uates a query, given as a set of parameters, according to the SPARQL se-
mantics [Prud’hommeaux and Seaborne, 2008]. The first step before evalu-
ating the query is to replace any bound variable of the GroupGraphPattern
with its value in the current (dynamic) context. Unbound variables are (pos-
sibly) bound by the SparqlForClause later. By using the previously defined
PatternSolution type, the function returns a list of variable bindings by match-
ing a GroupGraphPattern $groupGraphPattern against the activeDataset (of the
dynamic environment). The SolutionModifier is used to control ordering and
slicing of the solution set. The function signature of fs:sparql is therefore
defined as:
fs:sparql($groupGraphPattern as xs:string, $solutionModifiers as xs:

string?) as PatternSolution*

The auxiliary function fs:value returns the binding of a specified SPARQLfs:value

variable Variable in the solution sequence PS. If the Variable is not bound in
PS, fs:value returns the empty sequence (). We will use fs:value to access the
results of the previously defined function fs:sparql. Its static type signature is
defined as follows:
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fs:value($ps as PatternSolution, $variable as xs:string) as RDFTerm

Using the two new functions fs:sparql, fs:value, and the new environment
component activeDataset we define the dynamic evaluation semantics of the
SparqlForClause.

Rule 3.6. We use the function fs:sparql to evaluate the GroupGraphPattern,
including the SolutionModifier. For every pattern solution PS we create new
variables containing the values of the result and finally evaluate ReturnExpr
in this changed environment. This results in a sequence of values.

statEnv ` VarName1 of var expands to Variable1
· · ·

statEnv ` VarNamen of var expands to Variablen
dynEnv ` fs:sparql(GroupGraphPattern,

SolutionModifier)⇒ PS1, . . . , PSm

dynEnv + varValue

 Variable1 ⇒ fs:value(PS1, Variable1);
· · · ;

Variablen ⇒ fs:value(PS1, Variablen)

 ` ReturnExpr⇒ Value1

· · ·

dynEnv + varValue

 Variable1 ⇒ fs:value(PSm, Variable1);
· · · ;

Variablen ⇒ fs:value(PSm, Variablen)

 ` ReturnExpr⇒ Valuem

dynEnv `
for $VarName1 · · · $VarNamen
where GroupGraphPattern SolutionModifier
return ReturnExpr⇒ Value1, . . . , Valuem

Rule 3.7. If the evaluation of the fs:sparql function does not yield any solution
mapping, the evaluation result of the whole SparqlForClause is the empty
sequence.

statEnv ` VarName1 of var expands to Variable1
· · ·

statEnv ` VarNamen of var expands to Variablen
dynEnv ` fs:sparql(GroupGraphPattern, SolutionModifier)⇒ ()

dynEnv `
for $VarName1 · · · $VarNamen
where GroupGraphPattern SolutionModifier
return ReturnExpr⇒ ()

Next we will define SparqlForClauses containing DatasetClauses. As the
definition of the scoping graph (see Definition 2.9) implies, blank nodes are
scoped to a set of pattern solutions of a single SPARQL query.

In XSPARQL++ instead, we redefine the scope of the scoping graph as the
a whole XSPARQL query which may includes several SparqlForClauses. By this
redefinition, and by treating blank nodes from the active dataset as constants
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for the graph pattern matching, XSPARQL++ provides a measure to refer to
blank nodes in a SparqlForClause, bound by an enclosing SparqlForClause.

We assume that the previously defined fs:sparql function adheres to this
slightly modified version of graph pattern matching, compared to the original
SPARQL semantics.

As an auxiliary grammar production rule used only for the semantics
specification we introduce DatasetClauses:DatasetClauses

DatasetClauses ::= DatasetClause*

To implement the Dataset Scoping feature, we define that every SparqlFor-
Clause containing an explicit DatasetClause creates a new scoping graph. If
the SparqlForClause contains no DatasetClause the previous scoping graph is
used.

Therefore we introduce a new function fs:dataset which creates a newfs:dataset

scoping graph RDFDataset. Any FLWOR’ expression nested in a DatasetClause
must evaluate to value of type uri or RDFGraph. If it is of type uri we assume
that the corresponding RDFGraph can be retrieved over HTTP. The function is
defined as follows:

fs:dataset($datasetClauses as xs:string) as RDFDataset

Rule 3.8. The DatasetClause is evaluated by the fs:dataset function. Before
evaluating the fs:sparql function, the activeDataset component is set to the
newly created dataset.

statEnv ` VarName1 of var expands to Variable1
...

statEnv ` VarNamen of var expands to Variablen
dynEnv ` fs:dataset(DatasetClauses)⇒ Dataset

dynEnv + activeDataset(Dataset) ` fs:sparql(GroupGraphPattern,
SolutionModifier)⇒ PS1, . . . , PSm

dynEnv + varValue

 Variable1 ⇒ fs:value(PS1, Variable1);
· · · ;

Variablen ⇒ fs:value(PS1, Variablen)

 ` ReturnExpr⇒ Value1

...

dynEnv + varValue

 Variable1 ⇒ fs:value(PSm, Variable1);
· · · ;

Variablen ⇒ fs:value(PSm, Variablen)

 ` ReturnExpr⇒ Valuem

dynEnv `
for $VarName1 · · · $VarNamen DatasetClauses
where GroupGraphPattern SolutionModifier
return ReturnExpr⇒ Value1, . . . , Valuem

If the fs:sparql function returns no mappings, the result of the whole Sparql-
ForClause will be the empty sequence, also when containing DatasetClauses
(cf. Rule 3.7).
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3.6. ConstructTemplate

[60’] RDFLiteral’ ::= String’ ( LANGTAG | ’@{’ FLWORExpr ’}’ | ( ’^^’
IRIref’) )?

[66’] String’ ::= STRING_LITERAL1 | STRING_LITERAL2 |
STRING_LITERAL_LONG1 | STRING_LITERAL_LONG2 | ’{’ FLWORExpr ’}’

[67’] IRIref’ ::= IRI_REF | ’<{’ FLWORExpr ’}>’ | PrefixedName’
[68’] PrefixedName’ ::= PNAME_LN( (PN_PREFIX | ’{’ FLWORExpr ’}’)? ’:’ (

PN_LOCAL | ’{’ FLWORExpr ’}’) ) | PNAME_NS
[69’] BlankNode’ ::= BLANK_NODE_LABEL | ANON | ’_:{’ FLWORExpr ’}’

Listing 3.17: Modified ConstructTemplate syntax

3.6 ConstructTemplate

The second syntactic object introduced by XSPARQL is the ConstructTemplate.
It can be used instead of XQuery ReturnExpressions and allows to formulate
RDF output in a concise manner using the Turtle like syntax of SPARQL
ConstructTemplates.

Listing 3.17 shows the main XSPARQL modifications of the SPARQL Con-
structTemplate syntax, that is the introduction of constructed RDF terms.
Appendix A.2.3 presents the SPARQL part of the XSPARQL grammar produc-
tions.

3.6.1 Normalisation of ConstructTemplates

Normalisation, as the first step in formalising the semantics of ConstrucTem-
plates, introduces functions to validate the constructed RDF terms later.

Rule 3.9. First the special case of SPARQL style queries, a single Construct-
Clause preceding a single WhereClause, are rewritten to a more general query
by prepending the query with for * and moving the ConstructClause to the
end of the query.

u

ww
v

construct ConstructTemplate′

DatasetClause
WhereClause
SolutionModifier

}

��
~

Expr
==

u

ww
v

for * DatasetClause
WhereClause
SolutionModifier
construct ConstructTemplate′

}

��
~

Expr

This step reduces the query to the already known format of for * which
was already handled in Section 3.5.1.1.
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1 construct {
2 $person :name { fn:concat($firstname, " ", $lastname) } .
3 }
4 from <relations.rdf>
5 where {
6 $person :firstname $firstname .
7 $person :lastname $lastname .
8 }

Listing 3.18: XSPARQL construct query

1 for *
2 from <relations.rdf>
3 where {
4 $person :firstname $firstname .
5 $person :lastname $lastname .
6 }
7 construct {
8 $person :name { fn:concat($firstname, " ", $lastname) } .
9 }

Listing 3.19: Normalised XSPARQL construct query

Example 3.3. Listing 3.18 shows a simple SPARQL style query transforming a
name given in two RDF triples to a concatenated form of the name in one RDF
triple. It is normalised by the just introduced rule to the query in Listing 3.19.

In general we rewrite ConstructClauses to a standard return clauses. The
result will be a string typed as RDFGraph.

This rule overwrites Rule 2.26.

Rule 3.10. Normalise construct clauses to XQuery return expressions.

q
construct ConstructTemplate′

y
Expr

==

return fs:evalTemplate(
q

ConstructTemplate′
y

normaliseTemplate)

The normalisation rule J·KnormaliseTemplate maps the various syntactic ab-
breviations to “simple triples”, i. e., a sequence of Subject, Predicate, and
Object.

We omit full details of this normalisation and give only an example of
a normalisation rule dealing with Turtle ; shortcut notation to abbreviate
predicate-object lists for a common subject.

Rule 3.11. Normalise one variant of the Subject-PredicateObjectList to simple
triples.
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u

v
Subject Predicate1 Object1;
. . . ;
Predicaten Objectn

}

~

normaliseTemplate
==

Subject Predicate1 Object1
· · ·

Subject Predicaten Objectn

Rules for similar abbreviations allowed in SPARQL ConstructTemplates
are analogous and not shown here. Especially triple patterns using the
square bracket syntax for blank nodes need additional normalisation rules
introducing “fresh” labelled blank nodes.

3.6.2 Static type analysis of ConstructTemplates

The following rule avoids clashes of blank node labels, which could happen
when creating a sequence consisting of more than one ConstructTemplate.
Therefore we simply forbid ConstructTemplates as part of sequences.

Rule 3.12. It is not allowed to construct an RDFGraph as part of a sequence.
This applies not only to Constructed Datasets but to any occurrence of a
ConstructTemplate.

Expr1, Expr2
statEnv ` Expr1 : RDFGraph or Expr2 : RDFGraph

A static type error is raised for expression Expr

3.6.3 Dynamic evaluation of ConstructTemplates

During evaluation we have to ensure that the produced Subject Predicate
Object triples are indeed valid RDF triples. Validating triples, and their RDF
terms, is important, since on the subject position of an RDF triple only URIs
and blank nodes are allowed. The predicate position allows only URIs and
on the object position URIs, blank nodes, and RDF literals are allowed. Since
a ConstructTemplate can create RDF terms dynamically, their validity can only
be tested during dynamic evaluation.

We introduce the new function fs:evalTemplate; it evaluates its argument, a fs:evalTemplate

list of potential RDF triples given as a simple list of RDFTerms, where three
consecutive RDFTerms form one triple, for validity and returns an element of
type RDFGraph. The function checks for each given potential RDF triple if it
builds a valid RDF triple. The function adds every valid triple to the final
RDF graph and suppresses every invalid triple. The function’s type signature
is defined as follows:
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fs:evalTemplate($template as RDFTerm*) as RDFGraph

Rule 3.13. The fs:evalTemplate checks its arguments for validity by using the
function fs:validTriple. The function fs:evalTemplate builds a sequence by calling
the function fs:validTriple repeatedly.

dynEnv ` fs:validTriple(Subject1, Predicate1, Object1)⇒ Triple1
. . .

dynEnv ` fs:validTriple(Subjectn, Predicaten, Objectn)⇒ Triplen

dynEnv ` fs:evalTemplate

 (Subject1, Predicate1, Object1
, . . . ,

Subjectn, Predicaten, Objectn)

⇒ (Triple1, . . . , Triplen)

The function fs:validTriple checks for every RDF term of a potential triple,fs:validTriple

if it is of an allowed type. As already outlined above: On subject position
URIs and blank nodes are allowed, predicates allow URIs only, and on object
position URIs, blank nodes an literals are allowed. The function is defined as
follows:

fs:validTriple($subject as RDFTerm, $predicate as RDFTerm, object as

RDFTerm) as RDFTriple

Rule 3.14. The fs:validTriple checks for three RDF terms if they have the correct
type, depending on their position in the RDF triple.

dynEnv ` fs:bnode(Subject)⇒ ValueS
dynEnv ` ValueS <: (uri|bnode)

dynEnv ` fs:bnode(Predicate)⇒ ValueP
dynEnv ` ValueS <: uri

dynEnv ` fs:bnode(Subject)⇒ ValueO
dynEnv ` ValueS <: (uri|bnode|literal)

dynEnv ` fs:validTriple(Subject, Predicate, Object)⇒ (ValueS, ValueP, ValueO)

Rule 3.15. If any of the three RDF terms is not of the correct type, the whole
RDF triple is evaluated to the empty sequence.

dynEnv ` fs:bnode(Subject)⇒ ValueS
dynEnv ` Predicate⇒ ValueP

dynEnv ` fs:bnode(Object)⇒ ValueO

dynEnv ` not

 ValueS <: (uri|bnode)
ValueP <: uri
ValueO <: (uri|bnode|literal)


dynEnv ` fs:validTriple(Subject, Predicate, Object)⇒ ()
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[9] DatasetClause ::= "from" ( DefaultGraphClause | NamedGraphClause)
[10] DefaultGraphClause ::= SourceSelector
[11] NamedGraphClause ::= "named" (SourceSelector | IRIref’ "(" "{"

FLWORExpr "}" ")" )
[12] SourceSelector ::= IRIref’ | "{" FLWORExpr "}" | Var

Listing 3.20: Syntax for Constructed Dataset

3.6.4 Constructed Dataset

The new Constructed Dataset feature allows the user to create and query
intermediary RDF graphs. Constructed Dataset can be used in two different
ways: A new RDF graph is created earlier and referenced as a variable, or it
is created embedded in the DatasetClause as a nested FLWORExpr.

Listing 3.20 shows the syntax for the Constructed Dataset feature, modify-
ing the original SPARQL grammar productions Section A.2.3. The production
rules [9] and [10] are the original SPARQL grammar production rules. The
NamedGraphClause (production [11]) allows an IRIref’ followed by a FLW-
ORExpr enclosed in pairs of parentheses and curly braces. The SourceSelector
(production [12]), which is used by both the DefaultGraphClause and the
NamedGraphClause, additionally allows an embedded FLWORExpr and a
variable as well.

Rule 3.16. SourceSelector in Rule [10] it needs to be typed to RDFGraph.

statEnv ` SourceSelector⇒ Value
statEnv ` Value : RDFGraph

statEnv ` from SourceSelector : RDFGraph

Rule 3.17. SourceSelector in Rule [11] needs to be typed to an uri.

statEnv ` SourceSelector⇒ Value
statEnv ` Value : uri

statEnv ` from named SourceSelector : uri

3.6.5 Blank nodes

Anonymous blank nodes, i. e., blank nodes using the Turtle notation with
square brackets, are handled by the J·KnormaliseTemplate rule in Section 3.6.1.

Special attention has to be paid to labelled blank nodes. The function
fs:bnode converts the blank node of a graph pattern into a blank node of
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3. Towards XSPARQL++

a ConstructTemplate’s result. Since every for loop of XSPARQL++ contains
a positional variable, we use these positional variables to “skolemise” the
blank node labels, i. e., create a unique new blank node identifier for each
PatternSolution. The function’s type signature is defined as follows:

fs:bnode($term as RDFTerm) as RDFTerm

Rule 3.18. To generate a unique blank node label we skolemise the blank
node with the help of the positional variables of all enclosing for clauses.

dynEnv ` RDFTerm⇒ ValueR
dynEnv ` ValueR <: bnode

statEnv.posVars = PosVar1, . . . , PosVarn
dynEnv ` fs:skolemConstant (ValueR, PosVar1, . . . , PosVarn)⇒ ValueRS

dynEnv ` fs:bnode(RDFTerm)⇒ ValueRS

Rule 3.19. If the argument of fs:bnode is an RDF term but not a blank node, it
simply returns its argument.

dynEnv ` RDFTerm⇒ ValueR
dynEnv ` not(ValueR <: bnode)

dynEnv ` fs:bnode(RDFTerm)⇒ ValueR

3.6.6 Constructed RDF Terms

Additionally to the terms and variables already allowed in a SPARQL Con-
structTemplate, RDF terms can be built dynamically.

In analogy to the computed constructors of XQuery (see [Boag et al., 2007,
Section 3.7.3]), XSPARQL allows constructed RDF terms. While the syntax for
constructed RDF terms is the same as for XSPARQL, the semantics is adapted
as follows.

3.6.6.1 Constructed IRIs

Normally IRIs in SPARQL are enclosed in angle brackets. To create such an IRI
in XSPARQL an expression needs to be embedded in angle brackets without
any white space between the angle brackets and the curly braces: <{Expr}>
(see rule [67’] in Listing 3.17). As a second format of IRIs a Qualified Name
(QName), known from XML, can be used. It consists of a namespace prefix
followed by a colon and the local part of the URI. To create such a URI in
XSPARQL an EmbeddedExpression is allowed for both parts, namespace prefix
and local part, e. g., foaf:{Expr} (see rule [68’] in Listing 3.17).
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3.6. ConstructTemplate

Syntax of constructed IRIs A constructed IRI can either be created by
embedding an XSPARQL expression in a pair of angle brackets and curly
brackets (see Production [67’] in Listing 3.17), or by a QName while each
the prefix and the local part can be dynamic with an XSPARQL expression
enclosed in curly brackets (see Production [68’] in Listing 3.17).

Semantics of constructed IRIs To create correctly formatted and typed
SPARQLURIs, we introduce two new constructor functions: The function fs:iri fs:iri

expects one argument which has to be a valid IRI typed as xs:string and
returns a correctly formatted and typed SPARQLURI. A function with the
same name but two arguments creates an SPARQLURI formatted as QName,
while the first argument is interpreted as the namespace prefix, and the
second parameter is interpreted as local name of the IRI. Both arguments
have to be typed as xs:string. The static function signature is defined as
follows:

fs:iri($iri as xs:string) as uri

fs:iri($prefix as xs:string, $local as xs:string) as uri

Rule 3.20. IRIs using the angle bracket syntax.

J<{FLWORExpr}>KExpr
==

fn:iri(JFLWORExprKExpr)

Rule 3.21. IRIs given as QName.

q
{FLWORExpr1}:{FLWORExpr2}

y
Expr

==

fn:iri(
q

FLWORExpr1
y

Expr ,
q

FLWORExpr2
y

Expr)

The rules for QNames with a static prefix and for a static local part are
defined analogously (see also examples below).

Example 3.4. The following examples demonstrate simple constructed IRIs.
The embedded expressions, variables or strings in the examples, could be
any XSPARQL expression which eventually results in a valid IRI or QName:

1 let $x := "foaf"

2 construct {

3 [] a {$x}:Person ;

4 foaf:{"homepage"} <{ fn:concat("http", "://", "stefanbischof.at") }>

;

5 {$x}:{"name"} "Stefan Bischof" .

6 }
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This example script results in the following RDF graph:

1 [] a foaf:Person ;

2 foaf:homepage <http://stefanbischof.at> ;

3 foaf:name "Stefan Bischof" .

3.6.6.2 Constructed Blank Nodes

To refer to blank nodes outside of the current context labelled blank nodes
can be constructed by giving a prefix like _: immediately followed by an
XQuery expression surrounded by curly braces (see rule [69’] in Listing 3.17).

Syntax of constructed blank nodes Constructed blank nodes are created by
appending an XSPARQL expression enclosed in curly braces to the common
blank node label prefix “_:”.

Semantics of constructed blank nodes To create correctly formatted and
typed RDF blank nodes, we introduce a new constructor function: The
function fs:bnode expects one argument which will be used as label for thefs:bnode

resulting labelled blank node and returns a correctly formatted and typed
blank node. The static function signature is defined as follows:

fs:bnode($label as xs:string) as bnode

Rule 3.22. Concatenate the dynamically built blank node label to the standard
blank node label prefix _:.

J_:{FLWORExpr}KExpr
==

fn:bnode(JFLWORExprKExpr)

Example 3.5. The following Listing shows an example of constructed blank
nodes. The embedded FLWORExpr’ consists in this case only of the variable
$id.

1 let $id := "i13"

2 for $person in ("Alice","Bob")

3 construct {

4 _:{$id} a :Item ;

5 :name "Mona Lisa" .

6 [] a :Person ;

7 :name $person ;

8 :bidsOn _:{$id} .

9 }

This XSPARQL query results in the following RDF graph:
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1 _:i13 a :Item ;

2 :name "Mona Lisa" .

3 [] a :Person ;

4 :name "Alice" ;

5 :bidsOn _:i13 .

6 _:i13 a :Item ;

7 :name "Mona Lisa" .

8 [] a :Person ;

9 :name "Bob" ;

10 :bidsOn _:i13 .

Note that defining triples twice is no problem, the RDF graph will contain
the relevant triples only once, as the RDF semantics eliminates duplicate
triples2.

3.6.6.3 Constructed Literals

Syntax of constructed literals Different RDF literals can be created at run-
time using different syntaxes. The most flexible one is the usage of a standard
enclosed expression using curly braces (see rule [66’] in Listing 3.17). The
optional data type or language tags can also be created dynamically (see rule
[60’] in Listing 3.17).

Semantics of constructed literals To create correctly formatted and typed
RDF literals, we introduce three new constructor functions: The function fs:literal

fs:literal creates an RDF literal from a given string. The function fs:literal-lang fs:literal-lang

creates an RDF literal with a language tag, and the function fs:literal-dt creates fs:literal-dt

an RDF literal with a data type annotation. The static function signatures are
defined as follows:

fs:literal($literal as xs:string) as literal

fs:literal-lang($literal as xs:string, $langtag as xs:string) as literal

fs:literal-dt($literal as xs:string, $dt as xs:string) as literal

Rule 3.23. Simple literals are enclosed by a pair of double quotes.

J{FLWORExpr}KExpr
==

fn:literal(JFLWORExprKExpr)

Rule 3.24. A constructed literal with a language tag is built by concatenating
both parts together with an ’@’ sign in between.

2Strictly speaking, our RDFGraph data type represents multisets of triples rather than
actual RDF graphs, but we assume that RDF tools consuming the output of XSPARQL
engines will take care of this duplicate elimination.
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q
{FLWORExpr1}@{FLWORExpr′2}

y
Expr

==

fn:literal-lang(
q

FLWORExpr1
y

Expr ,
q

FLWORExpr2
y

Expr)

Rule 3.25. The same applies to a constructed literal with a data type annota-
tion, while the delimiter is a double hat (’^^’) symbol.

q
{FLWORExpr1}ˆˆ{FLWORExpr′2}

y
Expr

==

fn:literal-dt(
q

FLWORExpr1
y

Expr ,
q

FLWORExpr2
y

Expr)

The rules for a static literal part, static language tag, and static data type
annotation are similar and thus not shown here.

Example 3.6. The example listing shows three different types of constructed
literals: a plain literal (line 3), a literal with a language tag (line 4) and a
literal typed as decimal (line 5):

1 let $x := "ice"

2 construct {

3 [] foaf:name {fn:concat("Al",$x)} ;

4 foaf:name "Alice"@{"en"} ;

5 foaf:age { 3 + 7 }^^xsd:decimal .

6 }

This XSPARQL query results in the following RDF graph:

1 [] foaf:name "Alice" ;

2 foaf:name "Alice"@en ;

3 foaf:age "10"^^xsd:decimal .

3.7 SPARQL Filter Operators

SPARQL includes several functions available in filter expressions of a Where-
Clause [Prud’hommeaux and Seaborne, 2008, Section 11]. In XSPARQL when
used in a SparqlForClause they are evaluated by fs:sparql. In XSPARQL these
functions are available as standard XQuery functions with the following type
declarations:

bound($A as RDFTerm) as xs:boolean

isiri($A as RDFTerm) as xs:boolean

isblank($A as RDFTerm) as xs:boolean

isliteral($A as RDFTerm) as xs:boolean

lang($A as literal) as xs:string

datatype($A as literal) as xs:string
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In contrast to the XSPARQL definition, the function names are given in
lowercase only in XSPARQL++. In contrast to the SPARQL specification which
defines that the functions bound, isiri, isblank, and isliteral return an error for
an unbound argument, we decided to return fn:false in that case.

The semantics of these functions is defined by the following rules, repla-
cing the Rules 2.30 to 2.35.

Rule 3.26. The function bound returns fn:true if its argument, a variable is
bound to a value, and fn:false otherwise.

Jbound($VarName)KExpr
==

Jfn:empty($VarName)KExpr

Rule 3.27. The function isiri returns fn:true if its argument, a variable is of
type uri, and fn:false otherwise.

Jisiri($VarName)KExpr
==

J$VarName instance of uriKExpr

Rule 3.28. The function isblank returns fn:true if its argument, a variable is
of type blank, and fn:false otherwise.

Jisblank($VarName)KExpr
==

J$VarName instance of bnodeKExpr

Rule 3.29. The function isliteral returns fn:true if its argument, a variable is
of type literal, and fn:false otherwise.

Jisliteral($VarName)KExpr
==

J$VarName instance of literalKExpr

Rule 3.30. The function lang returns returns the language tag of a literal
containing a language annotation. If the literal contains no language tag, the
empty string is returned.

Jlang($VarName)KExpr
==

Jfn:string($VarName/@xml:lang)KExpr

Rule 3.31. The function datatype returns the data type of a typed literal.
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Jdatatype($VarName)KExpr
==

Jfn:string($VarName/@datatype)KExpr

Appendix D.1 contains a formal description of semantic properties of
XSPARQL++, i. e., the relation between XSPARQL++ and XQuery, as well as the
relation between XSPARQL++ and SPARQL.

3.8 Query Evaluation Examples

We give two examples to show how the two main extensions of XQuery
which lead to XSPARQL work. In the Lifting example we will present the
evaluation of a SparqlForClause and in the Lowering example the evaluation of
a ConstructClause.

3.8.1 XML to RDF

The lowering example query iterates over a sequence of names, and creates a
person with a name for each of them.

1 for $name in ("Alice","Bob")

2 construct { _:b a foaf:Person ;

3 foaf:name {$name} . }

For the normalisation first Rule 3.10 is applied, introducing a calls to theNormalisation

function fs:evalTemplate. The $name variable occurs as a constructed literal
and is therefore rewritten by Rule 3.23 to an embedded call to fn:literal
enclosing the $name variable in a pair of double quotes. The whole template
is normalised by the J·KnormaliseTemplate rule.Moreover the ForClause is decorated
with a positional variable as specified by Rule 2.24.

This rewriting results in the following query (for easier readability we
resign from using all the needed type conversions):

1 for $name at $_name_pos in ("Alice","Bob")

2 return fs:evalTemplate((

3 _:b, a, foaf:Person,

4 _:b, foaf:name, fn:literal($name) ))

During XQuery static typing the individual RDFTerms will get their correctStatic typing

types and for every triple the fs:validTriple will be called.
The evaluation result is constructed by the Rule 2.12. The name stringsDynamic evaluation

of the sequence are assigned to the $name variable sequentially, while the
$_name_pos variable is 1 for the first iteration, and incremented for each
following iteration. The blank node label is created by calling the function
fs:skolemConstant. We assume that this function works by appending an
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underscore character and the value of the variable $_name_pos to the given
blank node label.

This results in the following RDF graph in Turtle notation:

1 _:b_1 a foaf:Person .

2 _:b_1 foaf:name "Alice" .

3 _:b_2 a foaf:Person .

4 _:b_2 foaf:name "Bob" .

3.8.2 RDF to XML

The following example query gets the names of all persons in an RDF graph
and returns them as an XDM sequence. The RDF graph used for this query is
given in Listing 2.2 on page 14.

1 for * from <relations.rdf>

2 where { [] a foaf:Person ;

3 foaf:name $name . }

4 return

5 $name

First Rule 3.1 is applied, replacing the star in the SparqlForClause by the Normalisation

only variable occurring in the WhereClause: $name.

1 for $name from <relations.rdf>

2 where { [] a foaf:Person ;

3 foaf:name $name . }

4 return

5 $name

In the static type analysis step the whole SparqlForClause is checked for Static type analysis

correct typing. Using Rule 3.5 we can infer that the value of variable $name

will be of type or subtype RDFTerm. Since $name is not bound earlier fs:sparql
replaces the variable in the WhereClause with its name as string.

Thus the function fs:sparql will be called with the following parameters:

1 fs:sparql(($name), "[] a foaf:Person ; foaf:name $name . ", "")

The first step in Rule 3.6 is to evaluate the fs:sparql function to a sequence Dynamic evaluation

of SPARQL solution mappings. According to the definition of fs:sparql its
parameters are evaluated equivalently to the following SPARQL query:

1 select $name from <relations.rdf>

2 where { [] a foaf:Person ;

3 foaf:name $name . }

The fs:sparql function returns the following three solution mappings (order
is irrelevant):
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# $name

1 “Alice”
2 “Bob”
3 “Charles”

Next the ReturnExpr is evaluated once for every solution mapping while
the value of the (XQuery) $name variable is set to the corresponding variable
binding of the current mapping. The ReturnExpr consists of the variable only,
thus the evaluation result is the value of the $name variable.

The result of the whole query is then given by the sequence of evaluation
results of the ReturnExprs. Therefore the following sequence is a possible
result of the whole query3:

("Alice","Bob","Charles")

3other results may differ in the order of the sequence
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Chapter 4

Implementation of XSPARQL

Based on the semantics presented in the last chapter, we have built a new
implementation1 capable of showing the advantages of the Dataset Scoping
and Constructed Dataset features and the XSPARQL language in general. In
this chapter we present our new implementation, especially how we solved
some practical problems.

The terms prior implementation and specification implementation in this
section refer to the implementation of [Lopes et al., 2009]. The terms current
implementation, presented implementation or just the implementation mean the
new one presented in this work.

We first describe the implementation requirements shortly and then give
an overview of the implementation architecture. After that we explain the
main part of the implementation, the query rewriter, in detail. Finally two
examples show how the rewriter works in practice.

4.1 Requirements

The most important requirements are given in the following list ordered by
decreasing priority:

Specification Conformance The main goal of the new implementation is to
show the capabilities of XSPARQL in practice. Therefore the implement-
ation should be compliant with the XSPARQL++ specification presented
in the previous chapter.

Optimisation The implementation should create and use data structures
appropriate for easy implementation of new optimisations.

1a demo is available at http://xsparql.deri.org/demo

http://xsparql.deri.org/demo
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Figure 4.1: XSPARQL architecture

Maintainability The implementation should be better maintainable than the
prior implementation thus enabling further development.

Platform Independence The implementation should run on different plat-
forms while keeping implementation effort to a minimum.

API The implementation should provide a simple API to be not only usable
as command line application but also in Web or GUI applications.

4.2 Overview

The presented implementation uses a similar architecture as the previous
implementation as shown in Figure 4.1. The numbers and letters of the
following list refer to the ones in Figure 4.1.

When evaluating an XSPARQL query, first the XSPARQL query A© is rewrit-
ten to an XQuery query D© by the XSPARQL query rewriter 1©. This rewriting
is executed completely statically thus no access to input data is needed and
query evaluation can be delayed to any time in the future.

Next the query is evaluated by an XQuery engine 2© such as Saxon [Kay].
XML data B© is processed directly by the XQuery engine. A standard SPARQL
implementation 3© such as Joseki [Joseki] is used for evaluating the embedded
SPARQL queries. The XQuery engine communicates with the SPARQL engine
via HTTP by encoding the SPARQL query in a URL. The SPARQL engine
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evaluates the query on RDF data C© and returns the result in the SPARQL query
results XML format [Beckett and Broekstra, 2008]. Since the query evaluation
result is in an XML format, it is processed by XQuery straightforwardly
afterwards. In the end, the XQuery engine emits the query result E©, be it
XML or RDF Turtle Syntax or another natively supported XQuery data format.

The XSPARQL query rewriter is written in Java thus enabling usage on Components

several different platforms. Since the rewriter is a self-contained program, it
is possible to store the resulting XQuery query and evaluate it independently
at any other time, e. g., if input data and XSPARQL rewriter are not available
in the same environment or to use the same query on several data sources.
For instant query evaluation we integrated the Saxon library. By this measure
queries can be evaluated straightforwardly. For the SPARQL HTTP endpoint,
an HTTP server accepting a SPARQL query as parameter and returning the
evaluation result to the HTTP client, we used Joseki.

4.2.1 XSPARQL Rewriter Overview

Internally the XSPARQL query rewriter implementation works by running
sequentially through six phases:

1. The Lexer creates a token stream from the XSPARQL query string.

2. The Parser creates an XSPARQL Abstract Syntax Tree (AST) representing
the original query. An AST is a condensed version of a full parse tree.

3. We perform pre-rewriting optimisation.

4. The Rewriter translates XSPARQL AST to XQuery AST.

5. We perform post-rewriting optimisation (pure XQuery optimisation).

6. The Serializer emits XQuery query as string for further processing.

4.2.1.1 Lexer & Parser (steps 1 and 2)

We are using a JFlex [JFlex] generated Lexer. The Lexer produces a stream of
tokens out of the XSPARQL query string. It uses different internal states for
the XQuery and the SPARQL query parts and thus returns different tokens
depending on the context.

The ANTLR parser generator [Parr, 2007] creates a parser using an LL(*)
parsing strategy from an XSPARQL grammar written in a similar syntax as the
XSPARQL grammar in Appendix A. The parser produces an Abstract Syntax
Tree (AST) representation of the query from the token stream of the lexer.
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4.2.1.2 Optimisation (steps 3 and 5)

In theses steps the rewriter can optimise the parsed query by applying
heuristic rules to the AST. Chapter 5 introduces one such optimisation in
detail.

4.2.1.3 Rewriting (step 4)

The core rewriting step takes an XSPARQLAST and converts it to an XQuery-
AST. Section 4.3 describes this step in more detail, as it is the most complex
step and the core of the XSPARQL rewriter.

4.2.1.4 Serialisation & Query Evaluation (step 6)

The parsing/rewriting process results in a pure XQueryAST. This AST is
eventually converted to a string (serialisation). This string can then be stored
in a file or directly evaluated.

4.3 Rewriting XSPARQL to XQuery

Unlike the prior implementation, the core of the new implementation is not
based on a monolithic recursive rewrite function but on a set of rewriting
rules dependent on the used constructs. The rewriter chooses the rules to
apply not only by examining the tree but by using context information, such
as variable scopes, too. ANTLR provides a concise syntax to specify such
rewriting rules thus resulting in a maintainable solution.

As the semantics definition in Chapter 3, this section is also divided in
two major parts: one handling the SparqlForClause used for lowering tasks
and the other describing the ConstructClause used for lifting tasks.

4.3.1 Lowering – SparqlForClause

The SparqlForClause, including a SPARQL WhereClause, is rewritten to a stand-
ard SPARQL select query and evaluated via the following steps (this proced-
ure follows the semantics definition in Section 3.5 closely):

1. Replace already bound variables occurring in the SPARQL WhereClause
by their values. Convert values to RDFTerms if needed.

2. Create a SPARQL select query using the variables of the for clause for
projection, the SPARQL WhereClause, and the optional solution modifiers.

3. Evaluate the built query by encoding it in a URL and sending it to a
SPARQL endpoint.
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4. Iterate over the returned bindings and assign the results to the corres-
ponding XQuery variables.

After these four steps and evaluation of the resulting SELECT query at the
SPARQL endpoint, the variables used in the SPARQL WhereClause are avail-
able as plain XQuery variables in the ReturnClause. The new variables are
automatically typed as RDFTerms.

Here fs:sparqlCall() shall be viewed as an implementation of the abstract
fs:sparql function used in the semantics definition in the previous chapter.
It is slightly different (having different parameters), thus it has a different
name.

The following overview rule shows the rewriting for a SparqlForClause:

u

v
for $VarName1 · · · $VarNamen DatasetClause
where GroupGraphPattern SolutionModifier
ReturnClause

}

~

Expr
==

let $_aux_queryresult := fs:sparqlCall


$VarName1 · · · $VarNamen,
DatasetClause,
GroupGraphPattern,
SolutionModifier


for $_aux_result at $_aux_result_pos in $_aux_queryresult

J$VarName1 · · · $VarNamenKSparqlResult($_aux_result)
JReturnClauseKExpr

The auxiliary mapping rule J·KSparqlResult($result) binds the variables of the
current solution mapping to XQuery variables for every iteration by “parsing”
the SPARQL result format with suitable XPath expressions.

J$VarName1 · · · $VarNamenKSparqlResult($result)
==

let $VarName1 := $result/_sparql_res:binding[@name = $VarName1]/∗
· · ·

let $VarNamen := $result/_sparql_res:binding[@name = $VarNamen]/∗

Next we explain the rewriting for the various clauses, performed by the
fs:sparqlCall() function.

To create a SPARQL select query, first all variables in the SPARQL Where- Where Clause

Clause need to be examined. According to the semantics specification there
are three different cases for every variable occurring at any position:

1. The variable is previously unbound;

2. The variable is bound by a SparqlForClause;
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3. The variable is bound by any standard XQuery expression.

To differentiate between these cases the implementation needs to know
statically which variables were previously bound and if they were created
by another SparqlForClause or by a plain XQuery ForClause or LetClause. We
implemented this behaviour as a stack of variable binding scopes using
ANTLR’s global dynamic attribute scopes (see [Parr, 2007, Section 6.5]), with
variables bound by a SparqlForClause marked accordingly.

Each variable occurring in the SPARQL WhereClause is processed depend-
ing on whether and how it was bound:

• If the variable was bound by a SparqlForClause, the value of the variable
is transformed to the Turtle style string of the corresponding RDF term
representation before replacing the variable.

• If this variable was bound by a standard ForClause or LetClause, the
variable is replaced by its value.

• If the variable was not bound earlier, it is left untouched. In this case
the SPARQL engine is supposed to bind it.

The SourceSelector of a DatasetClause can either be an IRI, as in standardDataset Clause

SPARQL, or a variable. IRIs are translated to the SPARQLIRI representation by
surrounding it with angle brackets.

If a variable is used as SourceSelector and it is not of type RDFGraph, it
is assumed that the variable evaluates to an IRI (not only xs:anyURI but
also xs:string could be used here), which additionally is accessible by the
SPARQL engine and returns a valid RDF graph.

If the variable is of type RDFGraph, i. e., the variables value is a string
representation of an RDF graph, Constructed Dataset, a feature introduced in
Section 3.1, is used. It is not possible to pass an RDF graph as dataset directly
(inline) in a SPARQL query. Therefore a temporary file containing the RDF
graph is created and an IRI is assigned to it. This IRI is then passed to the
SPARQL engine in the DatasetClause.

Since XQuery and its functions are free of side effects, there exists no
standard function to create temporary files. Hence we provide a imple-
mentation dependent XQuery extension function turtleGraphToURI to create
a temporary file containing its first parameter and return the associated IRI.
For this approach to work two conditions must be fulfilled:

1. The Saxon XQuery engine is used because the extension mechanism
currently used is implementation dependent.

2. To keep the overhead and minimise dependencies a local file URI is
generated. This constraint demands that the XQuery processor is called
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on the same machine as the SPARQL engine. Future implementations
might loosen this restriction by providing the RDF graph file for down-
load by using some network protocol or by inserting the graph into an
RDF store using the SPARQL 1.1 update protocol [Schenk et al., 2010]
which is currently being standardised..

In a SparqlForClause only SPARQL solution modifiers and no XQuery Solution modifier

solution modifiers are allowed. Since only previously unbound variables are
allowed in a SPARQL solution modifier, the solution modifier part can be
copied to the rewritten SPARQL query verbatim.

The so built query string is then passed to a SPARQLHTTP service which Evaluation

evaluates the query and returns the variable bindings using the SPARQL
query results XML format [Beckett and Broekstra, 2008]. While iterating over
the results new XQuery variables, reusing the variable names of the XSPARQL
select clause and, are created for each result set. These variables contain the
values returned by the SPARQL engine while retaining type information of
the SPARQL query results XML format.

4.3.2 Lifting – SPARQL ConstructClause

As mentioned earlier, XSPARQL allows to emit RDF in Turtle notation using a
ConstructClause instead of a standard XQuery ReturnClause (see Section 3.6).
The query rewriter translates the ConstructClause to a standard ReturnClause.
This newly created ReturnClause ensures at evaluation time, that only valid
RDF triples are generated.

Since RDFTerm is no default data type of XDM, an XQuery has to use an
already existing output format. We decided to create a sequence of strings
from a ConstructClause which builds up to an RDF graph in the end.

To ensure that a valid Turtle RDF graph is produced, every term of each
triple must be valid for its position in the triple, cf. Section 3.6.3 above.

4.3.2.1 Plain SPARQL Variables

In our implementation, the _rdf_term function creates an RDF string repres-
entation of a variable value, bound by a SparqlForClause, depending on the
data type. The namespace prefix sr stands for the SPARQL Query Results
XML Format namespace defined in [Beckett and Broekstra, 2008].
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J_rdf_term($VarName)KExpr
==

typeswitch ($VarName)
case $e as schema-element(literal)
let $DT := data($e/@datatype)
let $L := data($e/@xml:lang) return fn:concat("""", $e,
if($L) then fn:concat("@", $L) else "",
if($DT) then fn:concat("^^<", $DT, ">") else "",
"""")

case $e as schema-element(bnode) return fn:concat("_:", $e)
case $e as schema-element(uri) return fn:concat("<", $e, ">")
default return ""

Plain variables in a ConstructClause are only allowed if bound by a Sparql-
ForClause, i. e., variables of type RDFTerm, since RDF triples can only consist
of RDF terms.

4.3.2.2 Constructed RDF Terms

A second set of objects besides variables which have to be validated are
constructed RDF terms. A literal construct is an enclosed FLWOR expression
which evaluates to an RDF literal. To ensure correct typing the constructor
function _xsparql:literal transforms the input string to a value of type literal_xsparql:literal

by escaping any double quotes (using the auxiliary function _xsparql:escape-
quotes) and then, enclosing the resulting string in a pair of double quotes.

1 _xsparql:literal($argument as xs:string) as literal {

2 validate { <literal>{_xsparql:escape-quotes($argument)}</literal> }

3 }

The result of this enclosed expression is first assigned to a temporary
variable. If this variable is a valid literal then the triple is returned (depending
on the other RDF terms in the triple). XQuery tests the constructed RDF
term to be a valid literal before building the triple by using the function_xsparql:validLiteral

_xsparql:validLiteral.

1 let $_temp := _xsparql:literal(Expr)

2 return if(_xsparql:validLiteral($_temp)) then

3 subject predicate $temp

4 else ""

The same construct is used for literals with a language tag or a data
type annotation. For these cases new XQuery constructors _xsparql:literallang
and _xsparql:literaldt are used. These two functions are defined accordingly
and have the same static type signature as the corresponding constructor
functions in the semantics definition of XSPARQL++.
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A constructed IRI is created by enclosing expression in angle brackets.
This task is performed by the _xsparql:iri constructor function. As the other
constructor functions it is defined analogously to the corresponding con-
structor functions of the XSPARQL++ semantics in the last chapter.

Before building the triple XQuery validates the constructed RDF term to
be a valid IRI by using the function _xsparql:validIRI.

1 let $_temp := _xsparql:iri(Expr)

2 return if(_xsparql:validIRI($_temp)) then

3 subject predicate $temp

4 else ""

Constructed blank nodes are created in a similar way by appending the
enclosed expression to the static blank node prefix. It is defined analogously
to the corresponding constructor functions of the XSPARQL++ semantics in
the last chapter.

Blank nodes are tested for validity before building the triple. In this case
the validate function is called _xsparql:validBNode

1 let $_temp := _xsparql:bnode(Expr)

2 return if(_xsparql:validBNode($_temp)) then

3 subject predicate $temp

4 else ""

4.3.2.3 Blank Nodes

As described in semantics specification in Section 3.6.5 the two main categor-
ies of blank nodes are labelled blank nodes and anonymous blank nodes. Both
have their own issues which are handled in the implementation similar to
the rewriting rules in the semantics specification.

Labelled Blank Nodes These are treated carefully by adding position vari-
ables from the surrounding for expressions. The different position variables
are separated by the underscore character. Rule 3.18 on page 68 shows the
rule used in the implementation.

Anonymous Blank Nodes In contrast to the semantics definition of the
new language XSPARQL++ in the last chapter, the implementation handles
anonymous blank nodes directly.When using anonymous blank nodes the
issue of unique blank node labels vanishes. But instead the possibility of a
VerbObjectList embedded in such an anonymous blank node leads to another
issue discussed below.

The rewriting depends on the position of the blank node: subject or object.
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Subject Position Anonymous blank nodes on subject position are re-
duced to the Turtle serialisation of an empty pair of square brackets.

1 let $_verbsobjects := generate a sequence of verb-objectlist pairs

2 return

3 if(fn:empty($_verbsobjects)) then

4 ""

5 else

6 "[]", $_verbsobjects, " . "

The let expression on line 1 generates a sequence of verb-objectlist pairs
separated by the semicolon character. This sequence is assigned to a new
temporary variable as string representation. See example in the next section
for an example on how to create this sequence.

If this sequence is empty, i. e., no valid verb-objectlist could be generated,
the whole triple is invalid and the empty string is returned. If this sequence
is not empty, i. e., at least one valid verb-objectlist pair could be generated, it
is returned as a string with a prefixed empty anonymous blank node.

This procedure ensures that no blank node stands on its own without a
valid predicate or subject.

Combined Object/Subject Position A blank node on object position is
always valid. For the depending predicate-object pairs we use the standard
way of printing, while the only difference is the usage of a semicolon as
separator instead of the dot.

subject predicate "["(predicate object ";")* "]"

4.3.3 Dataset Scoping

Dataset Scoping as described in Section 3.2 allows us to join variables over
nested SPARQL queries that potentially bind to blank nodes, without leading
to unintended behaviour.

One approach to implement this feature in a XSPARQL++ rewriter is to
execute the different SPARQL queries in a single query using union. To
make sure the results are the same and to distinguish the results of the
different queries, it is necessary to qualify the variable names. One possib-
ility is be to prefix every variable with an identifier unique to each query,
e. g., $query1_var1, $query2_var1 etc. In our implementation only variables
shared by outer and inner query are qualified with an _inner postfix instead.

When using this approach the XQuery engine will get all the results for
both, the inner and the outer SPARQL query in a single call to the SPARQL
endpoint. Note that this change can actually be perceived as an optimisation
similar to the one presented in Chapter 5. The join itself is then performed
by XQuery alone in a XQuery WhereClause.
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1 import module namespace _xsparql = "http://xsparql.deri.org/XSPARQLer/
xsparql.xquery" at "http://xsparql.deri.org/XSPARQLer/xsparql-types.
xquery";

2 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
3 <relations>
4 {
5 let $_aux_results0 := _xsparql:_sparql(("PREFIX foaf: <http://xmlns.

com/foaf/0.1/>
6 SELECT $Person $Name $Person_inner $FName
7 FROM <http://stefanbischof.at/xsparql/relations.ttl>
8 WHERE {
9 { $Person foaf:name $Name . }

10 union
11 { $Person_inner foaf:knows [ foaf:name $FName ] . }
12 }"))
13 for $_aux_result0 at $_aux_result0_pos in _xsparql:_sparqlResults(

$_aux_results0)
14 let $Person := _xsparql:_resultNode( $_aux_result0, "Person" )
15 let $Name := _xsparql:_resultNode( $_aux_result0, "Name" )
16 return <person name="{$Name}">
17 {
18 for $_aux_result1 at $_aux_result1_pos in _xsparql:_sparqlResults(

$_aux_results0)
19 let $Person_inner := _xsparql:_resultNode( $_aux_result1, "

Person_inner" )
20 let $FName := _xsparql:_resultNode( $_aux_result1, "FName" )
21

22 (: join dependent variables :)
23 where $Person = $Person_inner
24 return <knows> {fn:data( $FName )}</knows>}
25 </person>
26 }
27 </relations>

Listing 4.1: Implementation of FOAF lowering using Dataset Scoping

Using this approach the example of Dataset Scoping in Listing 3.10 on
page 54 is rewritten as shown in Listing 4.1. Instead of evaluating each
rewritten SPARQL query on its own, the Dataset Scoping implementation
merges the two SPARQL WhereClauses by a union.

The SPARQL query returns a single list of variable bindings, while the
variables $Person and $Name belong to the former outer query, and the inner
variables $Person_inner and $FName belong to the inner query.

To make the distinction between the two queries clearer: every solution
set contains either variables of the outer query or variables of the inner query.
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4.4 Rewriting Examples

In this section we explain the rewriting of two XSPARQL queries. One using
the SparqlForClause and one using a ConstructClause.

4.4.1 RDF to XML–Lowering

In this section we show the rewriting of an XSPARQL query by using the
query in Listing 2.15 on page 37 as an example. The resulting XQuery after
rewriting is shown in Listing 4.2.

Line 1 of the prolog in Listing 4.2 imports a library of XQuery functions
needed later. Line 2 declares the namespace needed when using the function
turtleGraphToURI (not used in this example) and line 3 declares the FOAF
namespace.

In the lines from 6 to 10 the outer SPARQL query is first constructed as a
string and then passed to the fs:sparqlCall() function. This function encodes its
argument to a URL and performs an HTTP GET request on a SPARQL endpoint.
The evaluation result is then assigned to the $_aux_results3 variable.

The for loop in line 11 iterates over the returned solution sets. In lines
13 and 15 the two variables of the SparqlForClause are introduced as XQuery
variables, using the data of the current iteration, i. e., $_aux_result3.

After creating a person element containing the name, the inner SPARQL
query is evaluated using the same mechanism as before. But this time not
all the variables are inserted as string into the query, but the join variables,
$Person and $Name, are replaced by their value piped through the _rdf_term
function. This function ensures that the returned value is the correct format
for SPARQL depending on the type.

After the SPARQL engine returned the results, a for loop iterates over
them.

The remaining SPARQL variable $FName is bound to an XQuery variable
and eventually the knows element containing the XML value of that variable
is returned. The query is ended by XML end tags of person and relations.

4.4.2 XML to RDF–Lifting

For the lifting task we use an example query presented by [Polleres et al.,
2009] shown in Listing 4.3. This query creates a FOAF RDF graph by pro-
cessing an XML file. An RDF triple is created for every knows element of
the source XML file. Although it is only a naive implementation of a lift-
ing task, it demonstrates how ConstructClauses are rewritten by XSPARQL.
Listing 4.4 shows the result when evaluating the query in Listing 4.3 on the
XML document in Listing 1.1 on page 3. The rewritten query is shown in
Listing 4.5.
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1 import module namespace _xsparql = "http://xsparql.deri.org/demo/xquery/
xsparql.xquery" at "http://xsparql.deri.org/demo/xquery/xsparql-
types.xquery";

2 declare namespace _javaSaxon = "java:org.deri.sparql.Sparql";
3 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
4 <relations>
5 {
6 let $_aux_results3 := _xsparql:_sparql( fn:concat( "PREFIX foaf: <http

://xmlns.com/foaf/0.1/>
7 ", " SELECT ", "$Person ", "$Name ", "
8 from ", "<http://xsparql.deri.org/data/relations.rdf>", "
9 where ", " { ", "$Person", " ", "foaf:name", " ", "$Name", " .

10 ", " } ", "order by ", "$Name " ) )
11 for $_aux_result3 at $_aux_result3_pos in _xsparql:_sparqlResults(

$_aux_results3 )
12

13 let $Person := _xsparql:_resultNode( $_aux_result3, "Person" )
14

15 let $Name := _xsparql:_resultNode( $_aux_result3, "Name" )
16 return
17 <person name="{$Name}">
18 {
19 let $_aux_results5 := _xsparql:_sparql( fn:concat( "PREFIX foaf: <http

://xmlns.com/foaf/0.1/>
20 SELECT $FName
21 from <http://xsparql.deri.org/data/relations.rdf>
22 where { ", _xsparql:_rdf_term( $Person ), " foaf:knows $Friend .
23 ", _xsparql:_rdf_term( $Person ), " foaf:name ", _xsparql:_rdf_term(

$Name ), " .
24 $Friend foaf:name $FName .
25 } " ) )
26 for $_aux_result5 at $_aux_result5_pos in _xsparql:_sparqlResults(

$_aux_results5 )
27 let $FName := _xsparql:_resultNode( $_aux_result5, "FName" )
28 return
29 <knows> {fn:data( $FName )}</knows>
30 }
31 </person>
32 }
33 </relations>

Listing 4.2: Rewriting of FOAF lowering
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1 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
2 for $person in doc("relations.xml")//person,
3 $nameA in $person/@name,
4 $nameB in $person/knows
5 construct
6 {
7 [ foaf:name {data($nameA)}; a foaf:Person ]
8 foaf:knows
9 [ foaf:name {data($nameB)}; a foaf:Person ].

10 }

Listing 4.3: Naive FOAF lifting

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 [ foaf:name "Alice" ;
3 a foaf:Person ;
4 foaf:knows [ foaf:name "Bob" ;
5 a foaf:Person ] ] .
6 [ foaf:name "Alice" ;
7 a foaf:Person ;
8 foaf:knows [ foaf:name "Charles" ;
9 a foaf:Person ] ] .

10 [ foaf:name "Bob" ;
11 a foaf:Person ;
12 foaf:knows [ foaf:name "Charles" ;
13 a foaf:Person ] ] .

Listing 4.4: Result of the query in Listing 4.3

The first three of lines of Listing 4.5 the rewritten query consist of name-
space declarations and the XSPARQL module import, as the lowering example
before.

The first result string is an RDF namespace declaration in Turtle notation.
This is needed for the resulting RDF graph.

The following three for loops iterate over all the knows children elements
of all person elements, using a similar syntax as the original query.

Since the ConstructClause contains a anonymous blank node at subject
position, the final result is retrieved in two steps: first a sequence of verb-
objectlists is created, then, if not empty, it is returned with an empty anonym-
ous blank node on subject position.

The first triple contains a constructed literal at object position. After
evaluating it and assigning its value to the $_rdf2 variable, it is tested for
validity. If it is a valid object, a sequence of the verb, foaf:name, and the
object, $_rdf2, separated by spaces and terminated by a semicolon is returned.
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1 import module namespace _xsparql = "http://xsparql.deri.org/demo/xquery/
xsparql.xquery" at "http://xsparql.deri.org/demo/xquery/xsparql-
types.xquery";

2 declare namespace _javaSaxon = "java:org.deri.sparql.Sparql";
3 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
4

5 "@prefix foaf: <http://xmlns.com/foaf/0.1/> . ",
6 for $person at $person_pos in doc( "http://xsparql.deri.org/data/

relations.xml" )//person
7 for $nameA at $nameA_pos in $person/@name
8 for $nameB at $nameB_pos in $person/knows
9

10 return
11 _xsparql:_serialize( (
12 let $_rdf0 := (
13 let $_rdf2 := _xsparql:_binding_term( data( $nameA ) )
14 return
15 if (_xsparql:_validObject( $_rdf2 )) then
16 ("", " ", "foaf:name", " ", _xsparql:_rdf_term( $_rdf2 ), " ; ")
17 else "",
18 "", " ", "a", " ", "foaf:Person", " ; ", ("", " ", "foaf:knows", "

[ ", (
19 let $_rdf8 := _xsparql:_binding_term( data( $nameB ) )
20 return
21 if (_xsparql:_validObject( $_rdf8 )) then
22 ("", " ", "foaf:name", " ", _xsparql:_rdf_term( $_rdf8 ), " ;

")
23 else "",
24 "", " ", "a", " ", "foaf:Person", " ; ")[fn:position() lt fn:

last()], " ] ", " ; "))
25 return
26 if (fn:not( fn:empty( $_rdf0 ) )) then
27 ("[", $_rdf0[fn:position( ) lt fn:last( )], " ] .&#xA;")
28 else ""
29 ) )

Listing 4.5: Rewriting of naive FOAF lifting
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Otherwise the return value is the empty string.
Next the static verb-object pair declaring the subject node as being of type

foaf:Person is returned. Since object term of the foaf:knows property is
already valid, the opening square bracket can be printed safely.

The second constructed literal, creating the name of the second person, is
evaluated as before.

For this second person, the static rdf:type relation (using the shorthand
a), is returned too. The predicate [fn:position() lt fn:last()] removes
the semicolon at the end of the last valid verb-objectlist pair, which is in
this case a foaf:Person ;. Eventually the closing square bracket, for the
anonymous blank node opened at line 16, is added.

Eventually the XQuery processor returns the final triple, but only if the
sequence of verb-objectlists is not empty. The last semicolon is removed
again.

92



Chapter 5

Query Optimisation

In the last chapter we presented our new implementation for the XSPARQL++
language. Our rewriting causes, in case of nested loops, potentially many
interleaved calls to a SPARQL endpoint, which is probably not very efficient
and particularly hard to deal with for built-in XQuery query optimisers.

In this chapter we introduce Xdep, an optimisation of XSPARQL++ queries
containing nested SparqlForClauses. In the end we discuss some other possible
optimisations.

5.1 Query Optimisation in General

Query languages such as SQL and SPARQL have a declarative syntax and
semantics (based on relational algebra) and are thus independent of physical
data representation. To answer a query although, the evaluation engine has
to access the data. The common procedure for evaluating a query is to create
a specific query evaluation plan per query. Normally a query can be rewritten
to a large number of query evaluation plans, varying highly in evaluation
time. A query optimiser tries to find the most efficient implementation in two
phases: Static optimisation and dynamic optimisation [Kemper and Eickler,
2004, Garcia-Molina et al., 2008].

Static optimisation is performed by applying different equivalence rules
on a logical representation of the query, for example swapping the order
of arguments of a join operation or changing the order of other operators
applied to the data.

The resulting logical query representation is then transformed to physical
representation. In this Dynamic Optimisation phase the query optimiser tries
to find an optimal query plan based on both data statistics and physical
operator implementations.
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Statistics about the data distribution can be used to aid the optimiser,
mostly during dynamic optimisation.

5.2 XDEP Dependent Join Optimisation

Our implementation approach of rewriting an XSPARQL++ query to XQuery
is naturally suited for performing logical query optimisation. The informa-
tion we are using for optimisation is the query itself, knowledge about the
communication with the SPARQL endpoint and the format of the returned
data. Xdep is an approach for optimising queries with high execution times
due to SparqlForClauses nested in a ReturnClause of a FLWOR’ expression (e. g.
Listing 3.5 on page 51).

To explain the details of the optimisation approach Xdep, some terms
need to be defined first:

Definition 5.1 (XQuery Join, Join Variable). In XQuery two nested for loops
are performing a join if the inner loop reuses the variable of the outer loop to
select corresponding data in a WhereClause or in the XPath expression. This
variable is called join variable.

XQuery allows the straightforward implementation of inner joins by nesting
ForClauses [Lehner and Schöning, 2004, Walmsley, 2007].

Definition 5.2 (Inner Join). An inner join in XQuery is a join over two nested
ForClauses.

Definition 5.3 (Dependent Join). A dependent join in XSPARQL++ is an inner
join over a SparqlForClause, referred to as inner clause or SI , nested in either a
SparqlForClause or a ForClause, referred to as outer clause, SO, or FO. Depend-
ent Variables Varsdep are the variables the inner and the outer clause share:
Varsdep = vars(SO) ∩ vars(SI).

Xdep is a dependent join optimisation since it targets targets nested Sparql-
ForClauses performing a dependent join. Xdep is a pre-rewriting optimisation
(see phase 2 in Section 4.2.1).

We look at joins where the inner loop is a SparqlForClause. There are two
relevant cases for the outer loop: it is either a plain XQuery ForClause or it is
a SparqlForClause.

First in this section the standard rewriting of a nested SparqlForClause
is shown using an example. After a short general description of Xdep its
limitations of applicability are presented. Then the Xdep optimisation is
explained in detail for a plain XQuery ForClause and then for a SparqlForClause
as outer clause.

94



5.2. XDEP Dependent Join Optimisation

1 let $names := ("Alice", "Bob", "Stefan")
2 return
3 <persons>{
4 for $name in $names
5 return <friends of="{$name}"> {
6 for $fname from <relations.rdf>
7 where { [] foaf:name $name ;
8 foaf:knows [ foaf:name $fname ] }
9 return <person>{$fname}</person>}

10 </friends> }
11 </persons>

Listing 5.1: Nested SparqlForClause

5.2.1 XDEP Motivation

In order to describe Xdep we first demonstrate how nested SparqlForClauses
are rewritten and evaluated by standard XSPARQL++ by examining an ex-
ample query.

Example 5.1. The query example query in in Listing 5.1 returns an XML
document containing lists of friends for three specific persons. The ForClause
on line 4 iterates over a list of names $names. For each name in the list a
query is sent to the SPARQL endpoint (lines 6–8), evaluated by the SPARQL
engine and the result is returned. In the presented example this leads to
three different SPARQL queries to be evaluated, once for each item in the
$names sequence. For “Alice” the SPARQL query #1, shown in Listing 5.3, is
sent to the SPARQL engine. SPARQL queries for the remaining two persons
are handled in the same way (see the SPARQL queries #2 and #3 in Listings
5.4 and 5.5 respectively).

The different queries sent to the SPARQL endpoint are similar. The only
difference between all these queries is the value which replaces the $name

variable (see Listing 5.2 for the standard rewriting). Nevertheless the SPARQL
engine has to parse, analyse, optimise and evaluate each query on its own.
The results of the three SPARQL queries are given in Table 5.1.

After that the results have to be encoded in XML and then decoded by
the XQuery engine again. Since the XQuery engine and the SPARQL endpoint
communicate over HTTP, communication latency times have to be considered
as well, especially if the two engines are not running on the same host.

The similarity of the queries of Listings 5.3, 5.4, and 5.5 indicate the
optimisation potential we exploit with Xdep.
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1 let $names := ("Alice", "Bob", "Stefan")
2 return
3 <persons> {
4 for $name at $_name_pos in $names
5 return
6 <friends of="{$name}">{
7 let $_aux_results3 := _xsparql:_sparql( fn:concat(
8 "PREFIX foaf: <http://xmlns.com/foaf/0.1/>
9 SELECT $fname from <relations.rdf>

10 where { [] foaf:name ", _xsparql:_rdf_term( _xsparql:
_binding_term( $name ) ), " ; foaf:knows [ foaf:name $fname ]
. } " ) )

11 for $_aux_result3 at $_aux_result3_pos in _xsparql:_sparqlResults(
$_aux_results3 )

12 let $fname := _xsparql:_resultNode( $_aux_result3, "fname" )
13 return
14 <person>{fn:data( $fname )}</person>}
15 </friends>
16 }
17 </persons>

Listing 5.2: Standard Rewriting of the Query in Listing 5.1

1 SELECT $fname FROM <relations.rdf>
2 WHERE { [] foaf:name "Alice" ;
3 foaf:knows [ foaf:name $fname ] }

Listing 5.3: SPARQL query #1 of Listing 5.2

1 SELECT $fname FROM <relations.rdf>
2 WHERE { [] foaf:name "Bob" ;
3 foaf:knows [ foaf:name $fname ] }

Listing 5.4: SPARQL query #2 of Listing 5.2

1 SELECT $fname FROM <relations.rdf>
2 WHERE { [] foaf:name "Stefan" ;
3 foaf:knows [ foaf:name $fname ] }

Listing 5.5: SPARQL query #3 of Listing 5.2
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$fname

“Bob”
“Charles”

(a) Results
for “Alice”
(Listing 5.3)

$fname

“Charles”

(b) Results for
“Bob”(Listing 5.4)

$fname

No results at all

(c) Results for
“Stefan”(Listing 5.5)

Table 5.1: Results of SPARQL queries of Listings 5.3, 5.4, and 5.5

5.2.2 General Optimisation Idea

Instead of calling SPARQL N times (while N is the number of elements/bind-
ings of the outer loop), all the solution mappings which would be gathered
by evaluating N SPARQL queries, will be gathered in a single SPARQL query
at once. All the potential values of the join variable(s) are stored in a tem-
porary variable. When iterating over the items of the outer loop, the current
item is joined with the value of the temporary variable, thus selecting the
corresponding data only. In summary there are two steps: (1) gather all
the possibly relevant data before evaluating the outer query and (2) during
evaluating the outer query select the corresponding data.

The query rewriter constructs a SPARQL query in an unconstrained form.
Unconstrained Form in this context means, that the dependent variables are
not replaced by a value, but the variable name itself remains in the SPARQL
query ’as is’.

In every iteration of the outer loop the current item is joined with the data
gathered in the first step. This join results in the same solution mappings as
an unoptimised SPARQL query would.

The semantics of Xdep is defined by a new semantics rule J·KExprXDEP.
This new rule is an additional normalisation rule and it is applied just before
normalisation with J·KExpr. In terms of the XQuery processing model (see
Figure 2.2) J·KExprXDEP could be applied after step SQ2.

For the optimisation to work efficiently we assume that the intermediary Assumptions for a better
runtimeresults fit into memory. If the results are too big to fit into the main memory,

evaluation speed is probably reduced. In this case it is currently unknown
how the resulting evaluation times would relate to the unoptimised query.

5.2.3 Conditions for Applicability

Definition 5.4 ([Angles and Gutierrez, 2008]). A graph pattern of the form
P FILTER C is said to be safe if vars(C) ⊆ vars(P).
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Definition 5.5 (Parametrised Query). A parametrised query is a nested Sparql-
ForClause P FILTER C reusing a variable of some outer scope in the built-in
constraint C only, and not in a P: vars(C) * vars(P).

Since Xdep is not applicable in the general case, two conditions have to
be satisfied:

Static Dataset The dataset clause of the inner query is static, meaning no
variables from the outer for query are used for determining the dataset
dynamically.
If the DatasetClause of the inner query contains a variable $X, then this
variable must be bound outside of the outer query.

Dependent Join The inner query is not a parametrised query, i. e., the inner
query must be a safe query. In other words, even if a dependent variable
may be not bound by the outer query, it is not allowed for a dependent
variable to occur in a Filter constraint only. Thus if SI = P FILTER C,
then vars(C) ⊆ vars(P).

Xdep is described below for two different cases: In the first case the
outer loop is a plain XQuery ForClause, in the second case the outer loop is a
SparqlForClause.

5.2.4 Outer XQuery for clause

In this case there is exactly one dependent variable, i. e., the variable of the
outer ForClause. First two auxiliary functions are introduced:

The function fs:dep (variables, GroupGraphPattern) returns the variablesfs:dep

of the first argument variables occurring in the GroupGraphPattern. The
function fs:nondep (variables, GroupGraphPattern) instead, returns all thefs:nondep

variables which occur in the GroupGraphPattern but not in the variables

sequence. For the Xdep mapping to XSPARQL++ we introduce the J·KExprXDEP
rule, as already outlined above.

The normalisation rule J·KSparqlQuery(Dataset) evaluates the SPARQL query,
similar to the J·KSparqlQuery normalisation of the original XSPARQL semantics,
but it implements the changed SPARQL graph pattern matching as introduced
in 3 for XSPARQL++.

Rule 5.1. A dependent join with an outer XQuery for clause is rewritten as
follows:
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Instead of iterating over all the items in the sequence of the ForClause,
first the SparqlForClause is evaluated (in our implementation by a separate
SPARQL engine). Normally the dependent variable occurring in the Sparql-
ForClause would have to be replaced by its value. Xdep instead evaluates
the SparqlForClause unconstrained to perform the join later in XQuery alone.
Thus the dependent variable has to be added to the variable list which is the
first parameter of the J·KSparqlQuery rule. The result of the SparqlForClause is
assigned to a temporary and new variable, i. e., $_result in the rewriting
rule.

Next the ForClause iterates over the items of its sequence. In every iteration
the current item is joined with the set of solution mappings assigned to
$_result by using the auxiliary mapping rule SparqlResDep.

J$VarName1 · · · $VarNamenKSparqlResDep($result)
==

fs:join($VarName1, fn:data($result/sr:binding[@name = ”VarName1”]/∗) and
· · · and

fs:join($VarNamen, fn:data($result/sr:binding[@name = ”VarNamen”]/∗)

Next we define the function fs:join which joins the values of a dependent fs:join

variable of the outer loop and the inner loop. Modelling the XSPARQL++
dependent join we understand "joins" here in the style of SPARQL, i.e. based
on compatible mappings, rather than on strictly matching values. Two values
Valueouter and Valueinner can be joined if they have the same value, if the value
of the variable of the outer query is a blank node, or if the outer variable
is unbound. This condition models the behaviour of SPARQL basic graph
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1 import module namespace _xsparql = "http://xsparql.deri.org/demo/xquery/
xsparql.xquery" at "http://xsparql.deri.org/demo/xquery/xsparql-
types.xquery";

2 import schema namespace _sparql_res = "http://www.w3.org/2007/SPARQL/
results#" at "http://www.w3.org/2007/SPARQL/result.xsd";

3 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
4 let $names := ("Alice", "Bob", "Stefan")
5 return
6 <persons> {
7 let $_aux_results3 := _xsparql:_sparql( fn:concat(
8 "PREFIX foaf: <http://xmlns.com/foaf/0.1/>
9 SELECT $fname $name from <relations.rdf>

10 where { [] foaf:name $name ; foaf:knows [ foaf:name $fname ] . }
" ) )

11 for $name at $_name_pos in $names
12 return
13 <friends of="{$name}">{
14 for $_aux_result3 at $_aux_result3_pos in _xsparql:_sparqlResults(

$_aux_results3 )
15 where ($name = fn:data($_aux_result/_sparql_res{:}binding[@name = "

name"]/*) or $name instance of schema-element(_sparql_res:bnode)
)

16 return
17 let $fname := _xsparql:_resultNode( $_aux_result3, "fname" )
18 return
19 <person>{fn:data( $fname )}</person>}
20 </friends>
21 }
22 </persons>

Listing 5.6: Xdep optimised rewriting of Listing 5.1

pattern matching as if Valueinner would have been replaced by the value of
Valueouter:

fs:join(Valueouter, Valueinner)
==

(Valueouter = Valueinner or Valueouter instance of schema-element(sr:bnode)
or unbound(Valueouter))

Example 5.2. In Listing 5.6 the query from Listing 5.1 is rewritten using Xdep.
After the XQuery prolog, the inner SPARQL query is executed, but without
replacing the dependent variable $name with a value. Instead, possible values
of $name will be part of the solution mappings stored in the $_aux_results3

variable.
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$name $fname

“Alice” “Bob”
“Alice” “Charles”
“Bob” “Charles”

Table 5.2: Result of Xdep optimised SPARQL query of lines 7–10 of Listing 5.6

1 <?xml version="1.0"?>
2 <sparql xmlns="http://www.w3.org/2005/sparql-results#">
3 <head>
4 <variable name="name"/>
5 <variable name="fname"/>
6 </head>
7 <results>
8 <result>
9 <binding name="name">

10 <literal>Alice</literal>
11 </binding>
12 <binding name="fname">
13 <literal>Bob</literal>
14 </binding>
15 </result>
16 <result>
17 <binding name="name">
18 <literal>Alice</literal>
19 </binding>
20 <binding name="fname">
21 <literal>Charles</literal>
22 </binding>
23 </result>
24 <result>
25 <binding name="name">
26 <literal>Bob</literal>
27 </binding>
28 <binding name="fname">
29 <literal>Charles</literal>
30 </binding>
31 </result>
32 </results>
33 </sparql>

Listing 5.7: Result of Xdep optimised SPARQL query of lines 7–10 of Listing 5.6
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Table 5.2 and Listing 5.7 show the result of the corresponding SPARQL
query. Next XQuery iterates over the values of the outer loop, $names in this
case.

For each $name exactly those solution mappings are selected for which the
value of XQuery $name variable is the same as the value of the $name variable
in the solution mapping.

Eventually the value of the non-dependent variables, in this case only
$fname, are retrieved from the SPARQL results and the ReturnClause can be
evaluated as before.

So instead of calling SPARQL once for each name, the SPARQL query is
evaluated only once and the join is performed in the XQuery WhereClause in
line 15 of Listing 5.6.

5.2.5 Outer SparqlForClause

Although the rule for optimising a SparqlForClause nested in another Sparql-
ForClause below looks more complicated, the procedure is in fact the same:
The inner SPARQL query, in an unconstrained form, is evaluated before the
outer SPARQL query. But since a SparqlForClause can assign values to more
than one variable, it is possible to join over multiple dependent variables
instead of only one as before.

The following rule shows this by adding all the dependent variables to
the variable list of the inner query. Again the dependent variables are not
replaced by a value in the GroupGraphPattern, since they are needed in the
SPARQL result, assigned to $_results_inner.

The outer SparqlForClause is rewritten as in standard XSPARQL.

Rule 5.2. For every solution mapping of the outer SparqlForClause a new For-
Clause iterates over the results of the inner query and joins the relevant parts
in a WhereClause using the dependent variables. In the following ReturnClause
all the non-dependent variables of the inner query are assigned to actual
XQuery variables. Eventually the final ReturnClause is evaluated.
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Example 5.3. In the example query in Listing 5.8 we create list of friends
which two people have in common. For this example two FOAF graphs are
used.

In the normal rewriting first a SPARQL call for getting all the friends of
the first person is performed. Then for each of these friends a SPARQL call
on the second dataset is made.

In the optimised version instead (see Listing 5.9), first the SPARQL call
of the inner SPARQL query is executed (the second FOAF graph), getting all
possibly needed data at once:

All the solution mappings which may be relevant for the inner loop later
are stored in the $_aux_results19 variable. After that, the outer SparqlFor-
Clause is evaluated as before, by getting all the friends of the first dataset.
Next XQuery iterates over the solution mappings of the outer query (standard
XSPARQL++ rewriting).

Finally a for loop iterates over the data of the inner query, this time not
performing a SPARQL query, but joining the already gathered data in an
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1 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
2

3 <sharedfriends>
4 {
5 for $Name from <http://stefanbischof.at/foaf.rdf>
6 where { [] foaf:knows $Person .
7 $Person a foaf:Person ;
8 foaf:name $Name . }
9 return

10 for $FriendName from <http://nunolopes.org/foaf.rdf>
11 where { [] foaf:knows $P .
12 $P a foaf:Person ;
13 foaf:name $Name . }
14 return <sharedfriend name="{$Name}" />
15 }
16 </sharedfriends>

Listing 5.8: Shared Friends Query

XQuery WhereClause. Eventually the ReturnClause is evaluated, returning an
XML element containing the shared friend’s name in an attribute.

Xdep rewrites the query to need two SPARQL queries only, independent
of the number of solution mappings, i. e., persons, of the outer loop.

Appendix D.2 presents a formal description and proof sketches stating
that Xdep implements the XSPARQL++ semantics.

5.3 Practical Optimisations

Besides the dependent join optimisation Xdep we introduce three other
simple optimisations by example only. Formal definition of these rules will
be part of future work.

5.3.1 Optimise Projection for FOR * queries

When performing a SPARQL for * query, the SPARQL implementation returns
all bound variables. This can lead to transferring unused and therefore useless
data. But this useless data has to be retrieved and is, in the worst case, only a
waste of resources.

By automatically evaluating which variables are really used later in the
ReturnClause, and deleting the unused variables from the SparqlForClause, an
XSPARQL++ implementation could optimise data transfer.
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1 import module namespace _xsparql = "http://xsparql.deri.org/XSPARQLer/
xsparql.xquery" at "http://xsparql.deri.org/XSPARQLer/xsparql-types.
xquery";

2 declare namespace foaf = "http://xmlns.com/foaf/0.1/";
3 import schema namespace _sparql_res = "http://www.w3.org/2007/SPARQL/

results#" at "http://www.w3.org/2007/SPARQL/result.xsd";
4 <sharedfriends> {
5 let $_aux_results19 := _xsparql:_sparql( (
6 "PREFIX foaf: <http://xmlns.com/foaf/0.1/>
7 SELECT $P $Name from <http://nunolopes.org/foaf.rdf>
8 where { [] foaf:knows $P . $P a foaf:Person ; foaf:name $Name . }

") )
9 let $_aux_results15 := _xsparql:_sparql( (

10 "PREFIX foaf: <http://xmlns.com/foaf/0.1/>
11 SELECT $Person $Name from<http://stefanbischof.at/foaf.rdf>
12 where { [] foaf:knows $Person . $Person a foaf:Person ; foaf:name

$Name . } ") )
13 for $_aux_result15 at $_aux_result15_pos in _xsparql:_sparqlResults(

$_aux_results15 )
14 let $Name := _xsparql:_resultNode( $_aux_result15, "Name" )
15 return
16 for $_aux_result19 at $_aux_result19_pos in _xsparql:

_sparqlResults( $_aux_results19 )
17 where ($Name = _xsparql:_resultNode( $_aux_result19, "Name" ) or

$Name instance of schema-element(_sparql_res:bnode))
18 return
19 <sharedfriend name="{$Name}" />
20 }
21 </sharedfriends>

Listing 5.9: Optimised rewriting of query in Listing 5.8

In the following example (see Listing 5.10) the bindings of all three
variables $s, $p and $x are passed to XQuery although only one, $x, is
actually needed in the construct expression.

1 for *
2 from <http://xsparql.deri.org/data/alice.ttl>
3 where {$s $p $x}
4 construct {$x :p [$x _:a] }

Listing 5.10: FOR * Query Example

By deleting $s and $p from the variable list (see Listing 5.11), the trans-
ferred data is reduced to a minimum, instead of enumerating all variables
occurring in the WhereClause as the XSPARQL++ and SPARQL specification
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demands.

1 for $x
2 from <http://xsparql.deri.org/data/alice.ttl>
3 where { $s $p $x }
4 construct {$x :p [$x _:a] }

Listing 5.11: Optimised Projection

5.3.2 Simpler Serializer Function

The previous implementation of the _xsparql:serialize depended on the recurs-
ive usage of fn:concat to serialise its arguments according to their types. The
original fs:serialize is as described in [Krennwallner et al., 2009, Section 2.1]. It
turned out in our experiments that calling that function recursively once for
each argument is slow for an increasing number of arguments. By using the
fn:string-join function instead, cf. http://xsparql.deri.org/demo/xquery/

xsparql-types.xquery for the definition, the number of function calls can be
reduced, thus reducing evaluation time queries containing ConstructClauses.

The _xsparql:serialize function takes a sequence of items as argument and
merges them by concatenation. If there are multiple static strings occurring
one after another in this argument sequence, they can be already concatenated
statically while rewriting the query. This can reduce evaluation time since
the concatenation is already performed during query rewriting.

5.3.3 Static Expression Evaluation

Expressions that are independent of the dynamic environment, e. g., no usage
of variables or embedded expressions, are called static expressions. Since no
dynamic environment is need to evaluate these, they can be evaluated static-
ally, i. e., before query evaluation. An XQuery engine can benefit by statically
evaluating XQuery built-in functions. Since we have more information about
the expressions introduced by XSPARQL++ than an XQuery engine during
static optimisation, we can evaluate some of these expressions, or parts of
them, statically. Since this measure moves some workload from the XQuery
engine to the XSPARQL++ rewriter and because such expressions have to be
evaluated at most once, the query evaluation time is reduced.

As XSPARQL++ defines, an expression used in a ConstructClause has to be
checked for validity before the RDF triple can be built. Nevertheless there
exist some cases where validity of an expression can be inferred statically.
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5.3. Practical Optimisations

1 select * from <graph.rdf>
2 where {:some $p :other }
3 construct {
4 $p $p $p .
5 }

Listing 5.12: Example scenario query

1 return _xsparql:serialize((
2 if(validSubject($p)) then
3 if(validPredicate($p)) then
4 if(validObject($p)) then
5 $p, " ", $p, " ", $p, " . "
6 else
7 ""
8 else
9 ""

10 else
11 ""
12 ))

Listing 5.13: Standard rewriting of example scenario

For demonstration with give the explanation of one scenario if the expres-
sion is only a variable $p bound at the predicate position of a WhereClause in
a SparqlForClause in Listing 5.12.

The rewritten query (see Listing 5.13) checks the validity of the $p variable
for every position.

Since $p has to be an IRI (at predicate position only IRI s are allowed)
and IRIs are allowed on any position, none of the else branches will ever
be reached. Since the triple will always be valid, all the validity checking
function calls can safely be removed (see Listing 5.14).

It is also a fact, that any variable bound by a SparqlForClause would be a
valid RDF object. Therefore validity checks for variables bound by SparqlFor-
Clauses at object position in a ConstructClause are superfluous and can safely
be removed too.

Remark 5.1. In SPARQL alone the same would apply to RDF subjects, but
literals are still not allowed on subject position in RDF.

Table 5.3 shows the cases for which validity checking is actually needed,
given that the expression used in the constructed RDF term is a variable
only. The columns show the position at which the variable was bound in
the SparqlForClause. The rows show the position the variable is used in the
ConstructClause. Therefore validity checking for variable only expressions
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5. Query Optimisation

1 return _xsparql:serialize((
2 $p, " ", $p, " ", $p, " . "
3 ))

Listing 5.14: Optimised rewriting of example scenario

binding position
construct position subject predicate object

subject no no no
predicate yes no yes

object no no no

Table 5.3: Need of Validity Checking

in constructed RDF terms, is only needed for variables used in predicate
position when bound at either subject or object position.

This optimisation approach could be extended to other expressions than
variables only, when (partly) static evaluation is possible.
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Chapter 6

Empirical Evaluation & Discussion

In order to validate our expectations of more efficient query evaluation of the
optimisation of the last chapter (to reduce query evaluation times applying
dependent join optimisation) we provide a practical evaluation in this chapter.

The presented methodology as well as the results and discussion shall
show the effects of the devised optimisation approach Xdep in practise.

6.1 Measuring XSPARQL Performance

To measure performance of computer hardware and programs, computer
scientists use benchmarks in various forms. The more complex hardware or
software gets, the harder it is to provide a valid test procedure, which truly
measures the performance of a system.

Since query language implementations provide a lot of features there
generally exist several possibilities to write the same query, it is hard to make
reliable statement of implementation performance. A benchmark suite solves
this problem by providing an example scenario containing concrete datasets
and queries to compare different query engines.

We chose the XMark XQuery benchmark suite [Schmidt et al., 2002]
because it is one of the most widely used XQuery benchmarks for comparing
XQuery engines [Afanasiev and Marx, 2008]. It uses synthetic data of an
auction site, with users selling items and bidding on items. One advantage is
the data generator, which can create coherent test data of arbitrary size. This
allows to compare query evaluation times for different source data sizes.

We conducted the following three experiments:

1. Run the XQuery benchmark queries on datasets of different size;
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2. For the second experiment we translated the benchmark queries and
datasets manually to XSPARQL and evaluated them on datasets of
different size. The datasets were translated to RDF before;

3. We applied the dependent join optimisation described in Chapter 5 to
the relevant queries of experiment #2 and executed them again on the
different datasets.

By comparing the results of experiment 1 and 2, we relate plain XQuery with
XSPARQL query evaluation. Since XSPARQL uses two execution engines, we
expect slower evaluation times for XSPARQL for most queries. Nevertheless
evaluation times are influenced by the SPARQL engine implementation. Since
there exists no algorithm to translate data and queries from XQuery/XML
to XSPARQL/RDF, the evaluation times are also influenced by details of
the manual query translation and the specific format of the source data
translation.

We expect faster evaluation times for experiment 3 than the baseline times
of experiment 2. Besides the evaluation time of the inner SPARQL query
the ratio of evaluation times (baseline vs. optimised) should increase on
the number of iterations of the inner query. For the generated datasets the
number of iterations depends directly on the size of the datasets. Therefore
we expect the evaluation times of experiment 3 growing slower than the
evaluation times of experiment 2 with increasing dataset size.

Since we are performing three experiments, three query sets are needed.Benchmark queries

The general starting point are the XMark queries.
For the first experiment we use the XMark XQuery queries. They are

available on the XMark homepage1 and in Appendix B. We replaced the the
function call fn:doc, used for referring to the XML source document by XMark,
with an external variable containing the path to the XML source document.
This measure provides a consistent way of passing the data source path to
both XQuery and XSPARQL queries.

The queries for the second experiment were created by translating the
XMark XQuery queries to XSPARQL. Although the translation was done
manually, we tried to minimise a possible performance impact. Appendix B
lists the translated queries.

To show the effects of our optimisation approach in Chapter 5 a third set
of queries was created: After translating the XSPARQL queries of experiment
#2 to XQuery we applied the Xdep optimisation on them.

The only queries qualifying for Xdep are the queries 8, 9 and 10. They
contain nested SparqlForClauses and fulfil the constraints specified in Sec-

1http://www.xml-benchmark.org/
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6.1. Measuring XSPARQL Performance

dataset # xmlgen XML (bytes) RDF (bytes)

1 0.05 5 750 712 5 106 023
2 0.10 11 669 705 10 337 185
3 0.20 23 514 450 20 687 081
4 0.50 58 005 732 51 525 338
5 1.00 116 517 075 104 453 072

Table 6.1: Benchmark data source sizes

dataset # XML (elements) RDF (triples)

1 76 963 69 952
2 154 015 139 891
3 307 851 277 403
4 763 909 690 482
5 1 527 585 1 381 668

Table 6.2: Benchmark data source sizes

tion 5.2.3. Queries 11 and 12 contain nested SparqlForClauses as well but they
are parametrised queries and Xdep is therefore not applicable.

To show the performance of the query evaluation, data sources in ascend- Benchmark data

ing sizes were created by using the XMark data generator xmlgen2. Data
generation with xmlgen depends on a single parameter determining the size
of the result file. Table 6.1 shows how this single factor relates to the final size
of the generated XML source document. Table 6.2 shows how the different
datasets are encoded in XML and RDF.

The resulting XML file contains data of an artificial auction site. People
can open auctions on items in different categories on different continents;
they can bid on these items and finally sell the items. Table 6.3 shows several
characteristics of the different datasets.

For the experiments #2 and #3, data has to be in RDF format. To make
the two scenarios, XML data and RDF data comparable, the XML documents
generated by xmlgen, are translated to RDF. Since this translation is a usecase
of XSPARQL, it was used for this task too. Table 6.1 shows the file size of the
translated RDF file in Turtle notation compared to the original XML file. It
also lists the resulting number of triples for each dataset; a number which is
more relevant in the RDF world than the pure file size since it shows data
complexity more accurately.

Table 6.3 shows the several characteristics of the benchmark data for

2http://www.xml-benchmark.org/generator.html

111

http://www.xml-benchmark.org/generator.html
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dataset # persons item cat. open auc. closed auc. avg. open bids

1 1 275 50 600 487 5.1
2 2 550 100 1 200 975 5.2
3 5 100 200 2 400 1 950 5.0
4 12 750 500 6 000 4 875 4.9
5 25 500 1 000 12 000 9 750 5.0

Table 6.3: Benchmark datasets characteristics

the different datasets. The most important for our later analysis will be the
number of persons and item categories. These characteristics apply not only
to the RDF data, but also to the original XML document. The table shows a
direct correlation between the xmlgen factor, the file sizes and specific data
characteristics namely the number of persons, the number of item categories,
the number of open auctions, the number of closed auctions, and the average
number of open bids on an open auction.

In summary we perform an evaluation in three experiments #1, #2, #3,
using all or some of the 20 XMark benchmark queries (and their XSPARQL
counterparts) on five different datasets, #1–#5 (in XML and RDF format).

6.2 Experimental Results

The test system was an AMD Opteron 250 dual core system with 4 GB main
memory running Ubuntu 8.10. For evaluating the XQuery queries we used
Saxon, a widely known XQuery and XSLT evaluation engine, in the version
9.2 enterprise edition (EE). We needed to use the EE edition because our new
implementation relies heavily on XQuery data types and especially on the
types defined in the schema for the SPARQL query results XML format [Beckett
and Broekstra, 2008], and none of the other editions provides schema-aware
evaluation of XQuery queries. We need a schema-aware XQuery engine, since
that feature allows us to validate XML documents and use the XML types
defined in the schema of the SPARQL query results XML format [Beckett
and Broekstra, 2008]. Furthermore, according to [Afanasiev and Marx, 2008]
Saxon is one of the best performing XQuery engines.

For the SPARQL query evaluation we used Joseki 3.4.0 which provides a
SPARQL endpoint for the ARQ SPARQL library. To run both engines we use
Sun Java 1.6.0 in a 64bit installation. Shell scripts automated the benchmark-
ing process, GNU Octave and Gnuplot are the tools used for data processing
and visualisation.
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Figure 6.1: Mean evaluation times of ex. #1 and #2 on dataset #1 in sec

We evaluated every query 20 times and computed an arithmetic mean
value as final result. If the evaluation of a query took over 10 hours, our test
framework aborted the evaluation process.

This section presents the evaluation results and the comparison of these.
Appendix C contains all query evaluation times for reference.

6.2.1 Experiment #1 vs. #2

In Experiment #1 we measured the evaluation times of all 20 queries of the
XMark XQuery benchmark suite on XML documents of different sizes as
specified above. Figure 6.1 and Table 6.4 show the query evaluation times of
experiment #1 as well as those of experiment #2 using dataset #1. Appendix
lists the query evaluation times for all dataset sizes.

As expected all the XSPARQL queries where slower than the original
XQuery queries. For the following queries XSPARQL was much slower than
XQuery:

Query 2 and 3 We assume that these queries are taking so much longer
to evaluate than most of the other queries because of the big overhead that
results of the big number of results the queries produce.

Query 8–12 By examining these queries we find all of them containing
nested SparqlForClauses. Therefore these were also the candidates for Xdep

optimisation evaluated in experiment #3. These results acknowledge the
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Query # XQuery XSPARQL

1 1.8 2.6
2 1.7 11.9
3 1.9 12.0
4 1.8 2.6
5 1.7 2.3
6 1.8 2.9
7 1.8 4.1
8 2.0 1 478.7
9 2.0 1 459.3

10 2.5 85.0

Query # XQuery XSPARQL

11 2.7 641.5
12 2.5 314.5
13 1.8 2.7
14 1.8 2.4
15 1.7 2.9
16 1.8 2.7
17 1.8 2.9
18 1.8 2.6
19 2.0 3.5
20 1.8 6.3

Table 6.4: Mean evaluation times of ex. #1 and #2 on dataset #1 in sec

dataset # Query 8 Query 9 Query 10

1 20.2 12.3 36.2
2 55.5 26.7 107.7
3 189.1 74.2 400.4
4 1 114.4 383.3 2 330.9
5 4 501.8 1 433.8 9 414.9

Table 6.5: Optimised query evaluation times in seconds

motivation of queries with nested SparqlForClauses probably having the most
promising optimisation potential.

Query 20 This query takes longer to evaluate because it contains not one
but three different SparqlForClauses.

In conclusion it is clear, that XSPARQL queries with more than one Sparql-
ForClause show the biggest optimisation potential.

6.2.2 Experiment #2 vs. #3

This section compares the results of experiment #2, standard XSPARQL, with
the corresponding results of experiment #3, Xdep optimised XSPARQL. Since
only the queries 8, 9, and 10 are relevant for Xdep optimisation, the results
of these queries only are discussed below.
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Figure 6.2: Evaluation times for query 8 in seconds

6.2.2.1 Query 8

Query 8 is the first query relevant to Xdep optimisation. It contains two
nested SparqlForClauses performing a dependent join (see Appendix B for all
unoptimised and optimised queries).

Figure 6.2 shows the mean query evaluation times for query 8 using
standard XSPARQL rewriting compared with Xdep rewriting with increasing
dataset size. Since query evaluation times of the standard XSPARQL rewriting
for datasets bigger than 20 MB exceeded the timeout, no results are available
for those datasets. The times for Xdep are also listed in Table 6.5.

The Xdep optimised evaluation times are lower than the XSPARQL baseline
times. The graph also shows that the Xdep rewritten query can process 10
times as much data as the unoptimised XSPARQL query (Xdep optimised
query needs less time to evaluate the 100 MB dataset then the unoptimised
query needs for the 10 MB dataset). A performance increase factor is given
later in this Chapter.

Listing 6.1 shows query 8 without the preamble. The outer SparqlFor-
Clause iterates over all persons in the dataset, the inner SparqlForClause first
retrieves all items one person bought, and counts them afterwards. Therefore
the inner SparqlForClause is evaluated once for every person in the dataset.
Since the number of persons in a dataset correlates directly with the size of
the dataset (see Table 6.3), the number of outer iterations depends directly on
the size of the dataset as well. This applies not only to query 8 but to every
XMark query containing nested SparqlForClauses.
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8 for $id $name
9 from $graph

10 where {
11 $person a foaf:Person ;
12 :id $id ;
13 foaf:name $name .
14 }
15 return <item person="{$name}">
16 {
17 let $x := for * from $graph
18 where {
19 $ca a :ClosedAuction ;
20 :buyer [ :id $id ] .
21 }
22 return $ca
23 return count($x)
24 }
25 </item>

Listing 6.1: Query 8

Without optimisation one SPARQL call is done for each person separately.
The time needed for one of these SPARQL calls depends on the used engine,
but it also on the size of the dataset: The bigger the dataset the more persons
are contained (see Table 6.3 on page 112) and the more SPARQL calls have
to be performed. Secondly, the bigger the dataset the longer each SPARQL
call needs. Therefore we get the discovered increase, assumed quadratic, in
evaluation time for increasing dataset size.

In the optimised version, only two SPARQL calls need to be performed,
independent of the number of persons contained in the dataset. One single
SPARQL call would select all the needed information of the bought items, and
another SPARQL call would select all the persons information.

Although the increase of query evaluation time with increasing dataset
size retained quadratic, the practical evaluation showed, that the gain of the
optimisation is bigger the more SPARQL calls can be saved, which confirms
our assumption that the number of interleaved SPARQL calls is indeed a
major bottleneck.

6.2.2.2 Query 9

Query 9 is syntactically similar to query 8. Table 6.4 shows that the query
evaluation times for both queries using the standard XSPARQL rewriter are
similar to. The only difference between these two queries is the inner Sparql-
ForClause, especially the WhereClause (see Appendix Section B.2). Figure 6.3
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Figure 6.3: Evaluation times for query 9 in seconds

shows the results of the Xdep optimised version of query 9 in relation to the
standard XSPARQL evaluation times.

The savings for query 9 are even bigger than for query 8.

6.2.2.3 Query 10

A similar behaviour can be observed for query 10. But for this query the
difference between the baseline and the optimised version is smaller. Queries
8 and 9 iterate over all the persons, while query 10 iterates over all the item
categories. As shown in Table 6.3, the number of categories, and therefore
the number of iterations of the outer loop, is by a factor 25 smaller than for
the queries 8 and 9. Additionally the SPARQL WhereClause has a different
structure thus also influencing the evaluation times.

6.2.2.4 Comparison

Figures 6.5 and 6.6 show the results of experiments #2 and #3 in comparison.
The XQuery queries 8 and 9 have nearly the same evaluation times and are
therefore nearly indistinguishable.

This section compares the resulting evaluation times of experiment #2
and #3 first by dataset size and then by the number of iterations of the inner
loop

Figure 6.5 shows the relations between the standard XSPARQL rewriting
and Xdep using linear axes based on the dataset size again. The figure
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Figure 6.4: Evaluation times for query 10 in seconds
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Figure 6.6: Same as Figure 6.5 but using a log-log scale

contains the same data as Figures 6.2, 6.3, and 6.4 for comparison. It is
already clear that the improvement of Xdep is bigger for query 8 and 9 than
it is for query 10.

Figure 6.6 uses a log-log scale instead. It shows not only a constant
improvement of the Xdep optimised queries over plain XSPARQL, but the
curve of the optimised queries become steeper with increasing dataset size
and therefore become faster with increasing dataset size.

Another influence, as already outlined above, is the number of iterations
of the inner SparqlForClause. Figure 6.7 depicts this relation. The distribution
of the data makes a comparison difficult, but linear axes provide a direct way
to see relations between the different data points.

Figure 6.8 uses a log-log scale and gives a better overview of the results.
In this figure it becomes evident fewer inner iterations, as in query 10, lead
to a minor improvement. While more inner iterations, as in query 8 and 9,
lead to bigger improvements.

The performance gain of Xdep in relation to standard XSPARQL can
also be shown as performance gain factor. Figure 6.9 and Table 6.6 show this
factor, computed by dividing the evaluation runtime for standard XSPARQL
evaluation by the evaluation runtime of the Xdep optimised queries. Since
query evaluation of XSPARQL queries for datasets bigger than 20 MB took
too long, the factor is only computable for datasets up to that size.

Figure 6.10 shows the performance gain factor dependent on the number
of inner iterations. This visualisation shows again that the query with fewer
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dataset # Query 8 Query 9 Query 10

1 73.1 119.1 2.4
2 112.3 229.8 3.1
3 137.0 345.6 3.6

Table 6.6: Xdep performance gain factor
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Figure 6.9: Xdep performance gain factor dependent on dataset size
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Figure 6.10: Xdep performance gain factor dependent on inner iterations

inner iterations (SparqlForClauses) improves less with Xdep than the queries
with more inner iterations. But it seems that the number of inner iterations
is not explaining all of the difference in the performance gain factor. Other
factors include the concrete SPARQL implementation, especially its optimisa-
tion algorithms. The runtimes of SPARQL queries may depend heavily on the
concrete serialisation of the WhereClause.
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Figure 6.9 and Table 6.6 show Xdep as being an improvement over stand-
ard XSPARQL rewritings. Although the performance gain factor varies highly
over the different queries, it is clear that the factor improves with increasing
dataset size.

In summary three factors influencing the improvement achieved by Xdep

could be identified:

1. We determine the number of iterations of the inner SparqlForClause influ-
encing the improvement rate, or performance gain.

2. Since the evaluation time of a SPARQL query is also determined by the
size of the dataset, the evaluation time of an XSPARQL query depends on
that size too.

3. But there is another component, the structure of the SPARQL Where-
Clause of the inner SparqlForClause, which has an impact on final query
evaluation result times too. The exact influence of this factor is harder
to determine, since it can not be varied in the same way as the other
two.
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Chapter 7

Summary & Conclusions

In this thesis we presented the ongoing work of improving XSPARQL on
multiple levels. We highlighted the problem of XML-RDF data integration, a
possible solution by using XSPARQL and several issues when using XSPARQL
in practise. We introduced new features thus adding use case scenarios.
The first, Constructed Dataset, especially useful for complex RDF to RDF
translations, introduces temporary RDF graphs to XSPARQL. Dependent on
the data source, XSPARQL queries containing nested SparqlForClauses may
show unintended behaviour, since variables can behave as being unbound.
The second feature, Dataset Scoping, fixes this unintended behaviour by
changing the native pattern matching of SPARQL in such a way that blank
nodes matched from the data, are matched as constants in a nested loop
“joins” between different SPARQL queries over the same dataset.

providing an intuitive way to join not only by literals and IRIs but also by
blank nodes of different SPARQL queries. Furthermore we gave an elaborate
formal semantics description of XSPARQL++, relying on the XQuery type
system, and fixing minor issues of original XSPARQL.

Then we presented a new implementation based on standard compiler
construction techniques. While still using the architecture of the former
implementation, we instead use a rule-based rewriting generator, allowing
straightforward implementation of rewriting rules. The new implementation
is a modular and more maintainable, platform independent solution.

We presented Xdep, an approach for optimising XSPARQL queries con-
taining nested SparqlForClauses, defined the constraints under which it is
applicable, gave formal rules, as well as example rewritings. Furthermore we
documented more practical and simpler optimisations.

To quantify the performance impact of the Xdep optimisation we per-
formed a practical evaluation using the new implementation and the Xdep

optimisation. We showed that unoptimised XSPARQL queries containing
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nested SparqlForClauses have potential for optimisation. Thus we identified
the communication between the XQuery engine and the SPARQL engine as
the main bottleneck of the implementation architecture. We showed that we
could use this optimisation potential with the presented Xdep dependent
join optimisation, by showing a better performance for all tested queries on
all tested dataset sizes.

7.1 Future Work

One way of extending XSPARQL in the future is to explore possible syntax
simplifications to make query authoring easier.

Since the results of our evaluation are promising, new ways of optimising
nested XSPARQL queries will be examined. A more detailed analysis of
Xdep could reveal the factors influencing performance exactly, and therefore
improve performance predictability. This analysis could be achieved by using
other, possibly self made, micro benchmarks.

In order to increase the validity of our propositions about query evaluation
times and measure performance in other use case scenarios we plan to
perform SPARQL/RDF benchmarks, including support for reasoning on RDF
data, such as the Berlin SPARQL benchmark [Bizer and Schultz, 2009] or the
RDF repository benchmark in [Thakker et al., 2010].

Currently Xdep does not implement the Dataset Scoping semantics when
the outer loop is a SparqlForClause. In the future we will extend the defini-
tion of Xdep to include the Dataset Scoping feature and make Xdep truly
transparent to the query author.

One way of improving XSPARQL evaluation performance would be to
redesign the interface between the XQuery and SPARQL engines. Commu-
nication over HTTP allows distant evaluation of the SPARQL parts of the
query, but it also adds several different delays to query evaluation such as
network latency or query/result encoding. By integrating SPARQL tighter
to the XQuery engine, we could improve query evaluation time. We could
use an extension mechanism of XQuery engines, be it an XQuery pragma or
an implementation dependent API, to enable direct communication of the
XQuery and SPARQL engines.
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Appendix A

Grammars

After a short introduction in grammar notation we present the XSPARQL
grammar in Section A.2, consisting of an XQuery derived part and a SPARQL
derived part. Section A.3 presents the grammar for XML while Section A.4
shows the grammar for XML Namespaces. In Section A.5 we present the
grammar of the RDF serialisation syntax Turtle.

A.1 Notation

All the following grammars use the notation defined by the XML specification
[Bray et al., 2008]: The grammar production are of the following form:

[1] Symbol ::= Definition Expression

The rule number in square brackets in the beginning help to find a
specific rule. Next is the symbol to be defined. There exists exactly one such
production rule for each symbol. The main part of the rule consists of the
definition of the symbol.

A.2 XSPARQL Grammar

This section provides a complete XSPARQL grammar not available in the
XSPARQL specification. The grammar is an adaption of the grammars of
XQuery [Boag et al., 2007] and SPARQL [Prud’hommeaux and Seaborne, 2008].
New production rules are marked with a prime symbol. Adapted rules are
currently not marked at all. There is also a web version available1 including
internal links and markup for changed rules.

1see http://stefanbischof.at/xsparql/grammar

http://stefanbischof.at/xsparql/grammar


A. Grammars

A.2.1 Changes

A few parts of the grammar rules of Akhtar et al. [2008] needed specific
changes to produce a valid grammar

• Prefix Declaration was in the wrong place, added in rule XQuery[6];

• Base Declaration was missing, added in rule XQuery[6];

• Filter operators were mixed case, see rule SPARQL[57];

• We chose a different way to distinguish between the TriplesSameSubject
for SparqlForClauses and the TriplesSameSubject’ for ConstructClauses
(rules SPARQL [32’]–[43’]);

• More general definition of constructed IRI (rules SPARQL [67’] and
[68’]), constructed literal (rules SPARQL [60’] and [66’], and constructed
blank node (rule SPARQL [69’]).

A.2.2 XQuery Grammar

The base for the XSPARQL grammar is the XQuery grammar [Boag et al., 2007].
Here the XQuery part of the XSPARQL grammar, containing the new clauses
[33a] and [33b] and the changed rules [6] and [33].

Non Terminals

[1] Module ::= VersionDecl? (LibraryModule | MainModule)

[2] VersionDecl ::= "xquery" "version" StringLiteral ("encoding"

StringLiteral)? Separator

[3] MainModule ::= Prolog QueryBody

[4] LibraryModule ::= ModuleDecl Prolog

[5] ModuleDecl ::= "module" "namespace" NCName "=" URILiteral Separator

[6] Prolog ::= BaseDecl? (((DefaultNamespaceDecl | Setter |

NamespaceDecl | ImportX) Separator) | PrefixDecl )* ((VarDecl |

FunctionDecl | OptionDecl) Separator)*
[7] Setter ::= BoundarySpaceDecl | DefaultCollationDecl | BaseURIDecl |

ConstructionDecl |

OrderingModeDecl | EmptyOrderDecl | CopyNamespacesDecl

[8] ImportX ::= SchemaImport | ModuleImport

[9] Separator ::= ";"

[10] NamespaceDecl ::= "declare" "namespace" NCName "=" URILiteral

[11] BoundarySpaceDecl ::= "declare" "boundary-space" ("preserve" | "

strip")

[12] DefaultNamespaceDecl ::= "declare" "default" ("element" | "function

") "namespace" URILiteral

[13] OptionDecl ::= "declare" "option" QName StringLiteral
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[14] OrderingModeDecl ::= "declare" "ordering" ("ordered" | "unordered")

[15] EmptyOrderDecl ::= "declare" "default" "order" "empty" ("greatest"

| "least")

[16] CopyNamespacesDecl ::= "declare" "copy-namespaces" PreserveMode ","

InheritMode

[17] PreserveMode ::= "preserve" | "no-preserve"

[18] InheritMode ::= "inherit" | "no-inherit"

[19] DefaultCollationDecl ::= "declare" "default" "collation" URILiteral

[20] BaseURIDecl ::= "declare" "base-uri" URILiteral

[21] SchemaImport ::= "import" "schema" SchemaPrefix? URILiteral ("at"

URILiteral ("," URILiteral)*)?

[22] SchemaPrefix ::= ("namespace" NCName "=") | ("default" "element" "

namespace")

[23] ModuleImport ::= "import" "module" ("namespace" NCName "=")?

URILiteral ("at" URILiteral ("," URILiteral)*)?

[24] VarDecl ::= "declare" "variable" "$" QName TypeDeclaration? ((":="

ExprSingle) | "external")

[25] ConstructionDecl ::= "declare" "construction" ("strip" | "preserve

")

[26] FunctionDecl ::= "declare" "function" QName "(" ParamList? ")" ("as

" SequenceType)? (EnclosedExpr | "external")

[27] ParamList ::= Param ("," Param)*
[28] Param ::= "$" QName TypeDeclaration?

[29] EnclosedExpr ::= "{" Expr "}"

[30] QueryBody ::= Expr

[31] Expr ::= ExprSingle ("," ExprSingle)*
[32] ExprSingle ::= FLWORExpr

| QuantifiedExpr

| TypeswitchExpr

| IfExpr

| OrExpr

[33] FLWORExpr ::= (ForClause | LetClause | SparqlForClause )+

WhereClause? OrderByClause?

"return" ExprSingle ReturnClause

[33a] ReturnClause ::=

"return" ExprSingle | "construct" ConstructTemplate

[33b] SparqlForClause ::=

"for" "distinct"? ("$" VarName ("$" Varname)* | "*") DatasetClause "where" GroupGraphPattern SolutionModifier

[34] ForClause ::= "for" "$" VarName TypeDeclaration? PositionalVar? "in

" ExprSingle ("," "$" VarName

TypeDeclaration? PositionalVar? "in" ExprSingle)*
[35] PositionalVar ::= "at" "$" VarName

[36] LetClause ::= "let" "$" VarName TypeDeclaration? ":=" ExprSingle

("," "$" VarName TypeDeclaration?

":=" ExprSingle)*
[37] WhereClause ::= "where" ExprSingle
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[38] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))

OrderSpecList

[39] OrderSpecList ::= OrderSpec ("," OrderSpec)*
[40] OrderSpec ::= ExprSingle OrderModifier

[41] OrderModifier ::= ("ascending" | "descending")? ("empty" ("greatest

" | "least"))? ("collation"

URILiteral)?

[42] QuantifiedExpr ::= ("some" | "every") "$" VarName TypeDeclaration?

"in" ExprSingle ("," "$" VarName

TypeDeclaration? "in" ExprSingle)* "satisfies" ExprSingle

[43] TypeswitchExpr ::= "typeswitch" "(" Expr ")" CaseClause+ "default"

("$" VarName)? "return"

ExprSingle

[44] CaseClause ::= "case" ("$" VarName "as")? SequenceType "return"

ExprSingle

[45] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle "else" ExprSingle

[46] OrExpr ::= AndExpr ( "or" AndExpr )*
[47] AndExpr ::= ComparisonExpr ( "and" ComparisonExpr )*
[48] ComparisonExpr ::= RangeExpr ( (ValueComp

| GeneralComp

| NodeComp) RangeExpr )?

[49] RangeExpr ::= AdditiveExpr ( "to" AdditiveExpr )?

[50] AdditiveExpr ::= MultiplicativeExpr ( ("+" | "-")

MultiplicativeExpr )*
[51] MultiplicativeExpr ::= UnionExpr ( ("*" | "div" | "idiv" | "mod")

UnionExpr )*
[52] UnionExpr ::= IntersectExceptExpr ( ("union" | "|")

IntersectExceptExpr )*
[53] IntersectExceptExpr ::= InstanceofExpr ( ("intersect" | "except")

InstanceofExpr )*
[54] InstanceofExpr ::= TreatExpr ( "instance" "of" SequenceType )?

[55] TreatExpr ::= CastableExpr ( "treat" "as" SequenceType )?

[56] CastableExpr ::= CastExpr ( "castable" "as" SingleType )?

[57] CastExpr ::= UnaryExpr ( "cast" "as" SingleType )?

[58] UnaryExpr ::= ("-" | "+")* ValueExpr

[59] ValueExpr ::= ValidateExpr | PathExpr | ExtensionExpr

[60] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[61] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"

[62] NodeComp ::= "is" | "<<" | ">>"

[63] ValidateExpr ::= "validate" ValidationMode? "{" Expr "}"

[64] ValidationMode ::= "lax" | "strict"

[65] ExtensionExpr ::= Pragma+ "{" Expr? "}"

[66] Pragma ::= "(#" S? QName (S PragmaContents)? "#)" /* ws: explicit

*/

[67] PragmaContents ::= (Char* - (Char* ’#)’ Char*))

[68] PathExpr ::= ("/" RelativePathExpr?)

| ("//" RelativePathExpr)

128



A.2. XSPARQL Grammar

| RelativePathExpr /* xgs: leading-lone-slash */

[69] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*
[70] StepExpr ::= FilterExpr | AxisStep

[71] AxisStep ::= (ReverseStep | ForwardStep) PredicateList

[72] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep

[73] ForwardAxis ::= ("child" "::")

| ("descendant" "::")

| ("attribute" "::")

| ("self" "::")

| ("descendant-or-self" "::")

| ("following-sibling" "::")

| ("following" "::")

[74] AbbrevForwardStep ::= "@"? NodeTest

[75] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

[76] ReverseAxis ::= ("parent" "::")

| ("ancestor" "::")

| ("preceding-sibling" "::")

| ("preceding" "::")

| ("ancestor-or-self" "::")

[77] AbbrevReverseStep ::= ".."

[78] NodeTest ::= KindTest | NameTest

[79] NameTest ::= QName | Wildcard

[80] Wildcard ::= "*"

| (NCName ":" "*")

| ("*" ":" NCName) /* ws: explicit */

[81] FilterExpr ::= PrimaryExpr PredicateList

[82] PredicateList ::= Predicate*
[83] Predicate ::= "[" Expr "]"

[84] PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr |

ContextItemExpr | FunctionCall | OrderedExpr

| UnorderedExpr | Constructor

[85] Literal ::= NumericLiteral | StringLiteral

[86] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

[87] VarRef ::= "$" VarName

[88] VarName ::= QName

[89] ParenthesizedExpr ::= "(" Expr? ")"

[90] ContextItemExpr ::= "."

[91] OrderedExpr ::= "ordered" "{" Expr "}"

[92] UnorderedExpr ::= "unordered" "{" Expr "}"

[93] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")" /*
xgs: reserved-function-names */

/* gn: parens */

[94] Constructor ::= DirectConstructor

| ComputedConstructor

[95] DirectConstructor ::= DirElemConstructor

| DirCommentConstructor

| DirPIConstructor
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[96] DirElemConstructor ::= "<" QName DirAttributeList ("/>" | (">"

DirElemContent* "</" QName S? ">"))

/* ws: explicit */

[97] DirAttributeList ::= (S (QName S? "=" S? DirAttributeValue)?)* /*
ws: explicit */

[98] DirAttributeValue ::= (’"’ (EscapeQuot | QuotAttrValueContent)*
’"’)

| ("’" (EscapeApos | AposAttrValueContent)* "’") /* ws: explicit */

[99] QuotAttrValueContent ::= QuotAttrContentChar

| CommonContent

[100] AposAttrValueContent ::= AposAttrContentChar

| CommonContent

[101] DirElemContent ::= DirectConstructor

| CDataSection

| CommonContent

| ElementContentChar

[102] CommonContent ::= PredefinedEntityRef | CharRef | "{{" | "}}" |

EnclosedExpr

[103] DirCommentConstructor ::= "<!--" DirCommentContents "-->" /* ws:

explicit */

[104] DirCommentContents ::= ((Char - ’-’) | (’-’ (Char - ’-’)))* /* ws:

explicit */

[105] DirPIConstructor ::= "<?" PITarget (S DirPIContents)? "?>" /* ws:

explicit */

[106] DirPIContents ::= (Char* - (Char* ’?>’ Char*)) /* ws: explicit */

[107] CDataSection ::= "<![CDATA[" CDataSectionContents "]]>" /* ws:

explicit */

[108] CDataSectionContents ::= (Char* - (Char* ’]]>’ Char*)) /* ws:

explicit */

[109] ComputedConstructor ::= CompDocConstructor

| CompElemConstructor

| CompAttrConstructor

| CompTextConstructor

| CompCommentConstructor

| CompPIConstructor

[110] CompDocConstructor ::= "document" "{" Expr "}"

[111] CompElemConstructor ::= "element" (QName | ("{" Expr "}")) "{"

ContentExpr? "}"

[112] ContentExpr ::= Expr

[113] CompAttrConstructor ::= "attribute" (QName | ("{" Expr "}")) "{"

Expr? "}"

[114] CompTextConstructor ::= "text" "{" Expr "}"

[115] CompCommentConstructor ::= "comment" "{" Expr "}"

[116] CompPIConstructor ::= "processing-instruction" (NCName | ("{" Expr

"}")) "{" Expr? "}"

[117] SingleType ::= AtomicType "?"?

[118] TypeDeclaration ::= "as" SequenceType
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[119] SequenceType ::= ("empty-sequence" "(" ")")

| (ItemType OccurrenceIndicator?)

[120] OccurrenceIndicator ::= "?" | "*" | "+" /* xgs: occurrence-

indicators */

[121] ItemType ::= KindTest | ("item" "(" ")") | AtomicType

[122] AtomicType ::= QName

[123] KindTest ::= DocumentTest

| ElementTest

| AttributeTest

| SchemaElementTest

| SchemaAttributeTest

| PITest

| CommentTest

| TextTest

| AnyKindTest

[124] AnyKindTest ::= "node" "(" ")"

[125] DocumentTest ::= "document-node" "(" (ElementTest |

SchemaElementTest)? ")"

[126] TextTest ::= "text" "(" ")"

[127] CommentTest ::= "comment" "(" ")"

[128] PITest ::= "processing-instruction" "(" (NCName | StringLiteral)?

")"

[129] AttributeTest ::= "attribute" "(" (AttribNameOrWildcard (","

TypeName)?)? ")"

[130] AttribNameOrWildcard ::= AttributeName | "*"

[131] SchemaAttributeTest ::= "schema-attribute" "("

AttributeDeclaration ")"

[132] AttributeDeclaration ::= AttributeName

[133] ElementTest ::= "element" "(" (ElementNameOrWildcard ("," TypeName

"?"?)?)? ")"

[134] ElementNameOrWildcard ::= ElementName | "*"

[135] SchemaElementTest ::= "schema-element" "(" ElementDeclaration ")"

[136] ElementDeclaration ::= ElementName

[137] AttributeName ::= QName

[138] ElementName ::= QName

[139] TypeName ::= QName

[140] URILiteral ::= StringLiteral

Terminals

[141] IntegerLiteral ::= Digits

[142] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

[143] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?)) [eE]

[+-]? Digits

[144] StringLiteral ::= (’"’ (PredefinedEntityRef | CharRef | EscapeQuot

| [^"&])* ’"’) | ("’" (PredefinedEntityRef | CharRef | EscapeApos |

[^’&])* "’")
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[145] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp" | "quot" | "apos

") ";"

[146] EscapeQuot ::= ’""’

[147] EscapeApos ::= "’’"

[148] ElementContentChar ::= Char - [{}<&]

[149] QuotAttrContentChar ::= Char - ["{}<&]

[150] AposAttrContentChar ::= Char - [’{}<&]

[151] Comment ::= "(:" (CommentContents | Comment)* ":)"

[152] PITarget ::= see PITarget in XML grammar

[153] CharRef ::= see CharRef in XML grammar

[154] QName ::= see QName in XML Namespace grammar

[155] NCName ::= see NCName in XML Namespace grammar

[156] S ::= see NT-S in XML grammar

[157] Char ::= see Char in XML grammar

The following symbols are used only in the definition of terminal

symbols; they are not terminal symbols in the above grammar.

[158] Digits ::= [0-9]+

[159] CommentContents ::= (Char+ - (Char* (’(:’ | ’:)’) Char*))

A.2.3 SPARQL Grammar

The second building block of the XSPARQL grammar is the SPARQL gram-
mar[Prud’hommeaux and Seaborne, 2008]. In the following grammar part
the rules [12] and [57] were changed. We added the rules [32’]–[43’], [45’],
[60’], and [66’]–[69’].

Non Terminals

[1] Query ::= Prologue

( SelectQuery | ConstructQuery | DescribeQuery | AskQuery )

[2] Prologue ::= BaseDecl? PrefixDecl*
[3] BaseDecl ::= ’BASE’ IRI_REF

[4] PrefixDecl ::= ’PREFIX’ PNAME_NS IRI_REF

[5] SelectQuery ::= ’SELECT’ ( ’DISTINCT’ | ’REDUCED’ )? ( Var+ | ’*’ )

DatasetClause* WhereClause

SolutionModifier

[6] ConstructQuery ::= ’CONSTRUCT’ ConstructTemplate DatasetClause*
WhereClause SolutionModifier

[7] DescribeQuery ::= ’DESCRIBE’ ( VarOrIRIref+ | ’*’ ) DatasetClause*
WhereClause? SolutionModifier

[8] AskQuery ::= ’ASK’ DatasetClause* WhereClause

[9] DatasetClause ::= ’FROM’ ( DefaultGraphClause | NamedGraphClause)

[10] DefaultGraphClause ::= SourceSelector

[11] NamedGraphClause ::= ’NAMED’ SourceSelector

[12] SourceSelector ::= IRIref | Var
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[13] WhereClause ::= ’WHERE’? GroupGraphPattern

[14] SolutionModifier ::= OrderClause? LimitOffsetClauses?

[15] LimitOffsetClauses ::= ( LimitClause OffsetClause? | OffsetClause

LimitClause? )

[16] OrderClause ::= ’ORDER’ ’BY’ OrderCondition+

[17] OrderCondition ::= ( ( ’ASC’ | ’DESC’ ) BrackettedExpression )

| ( Constraint | Var )

[18] LimitClause ::= ’LIMIT’ INTEGER

[19] OffsetClause ::= ’OFFSET’ INTEGER

[20] GroupGraphPattern ::= ’{’ TriplesBlock? ( ( GraphPatternNotTriples

| Filter ) ’.’? TriplesBlock? )*
’}’

[21] TriplesBlock ::= TriplesSameSubject ( ’.’ TriplesBlock? )?

[22] GraphPatternNotTriples ::= OptionalGraphPattern |

GroupOrUnionGraphPattern | GraphGraphPattern

[23] OptionalGraphPattern ::= ’OPTIONAL’ GroupGraphPattern

[24] GraphGraphPattern ::= ’GRAPH’ VarOrIRIref GroupGraphPattern

[25] GroupOrUnionGraphPattern ::= GroupGraphPattern ( ’UNION’

GroupGraphPattern )*
[26] Filter ::= ’FILTER’ Constraint

[27] Constraint ::= BrackettedExpression | BuiltInCall | FunctionCall

[28] FunctionCall ::= IRIref ArgList

[29] ArgList ::= ( NIL | ’(’ Expression ( ’,’ Expression )* ’)’ )

[30] ConstructTemplate ::= ’{’ ConstructTriples? ’}’

[31] ConstructTriples ::= TriplesSameSubject’ ( ’.’ ConstructTriples? )?

[32] TriplesSameSubject ::= VarOrTerm PropertyListNotEmpty | TriplesNode

PropertyList

[32’] TriplesSameSubject’ ::=VarOrTerm’ PropertyListNotEmpty’ |

TriplesNode’ PropertyList’

[33] PropertyListNotEmpty ::= Verb ObjectList ( ’;’ ( Verb ObjectList )?

)*
[33’] PropertyListNotEmpty’ ::= Verb’ ObjectList’ ( ’;’ ( Verb’

ObjectList’ )? )*
[34] PropertyList ::= PropertyListNotEmpty?

[34’] PropertyList’ ::= PropertyListNotEmpty’?

[35] ObjectList ::= Object ( ’,’ Object )*
[35’] ObjectList’ ::= Object’ ( ’,’ Object’ )*
[36] Object ::= GraphNode

[36’] Object’ ::= GraphNode’

[37] Verb ::= VarOrIRIref | ’a’

[37’] Verb’ ::= VarOrIRIref’ | ’a’

[38] TriplesNode ::= Collection | BlankNodePropertyList

[38’] TriplesNode’ ::= Collection’ | BlankNodePropertyList’

[39] BlankNodePropertyList ::= ’[’ PropertyListNotEmpty ’]’

[39’] BlankNodePropertyList’ ::= ’[’ PropertyListNotEmpty’ ’]’

[40] Collection ::= ’(’ GraphNode+ ’)’

[40’] Collection’ ::= ’(’ GraphNode’+ ’)’
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[41] GraphNode ::= VarOrTerm | TriplesNode

[41’] GraphNode’ ::= VarOrTerm’ | TriplesNode’

[42] VarOrTerm ::= Var | GraphTerm

[42’] VarOrTerm’ ::= Var | GraphTerm’

[43] VarOrIRIref ::= Var | IRIref

[43’] VarOrIRIref’ ::= Var | IRIref’

[44] Var ::= VAR1 | VAR2

[45] GraphTerm ::= IRIref | RDFLiteral | NumericLiteral | BooleanLiteral

| BlankNode | NIL

[45’] GraphTerm’ ::= IRIref’ | RDFLiteral’ | NumericLiteral |

BooleanLiteral | BlankNode’ |

NIL

[46] Expression ::= ConditionalOrExpression

[47] ConditionalOrExpression ::= ConditionalAndExpression ( ’||’

ConditionalAndExpression )*
[48] ConditionalAndExpression ::= ValueLogical ( ’&&’ ValueLogical )*
[49] ValueLogical ::= RelationalExpression

[50] RelationalExpression ::= NumericExpression ( ’=’ NumericExpression

| ’!=’ NumericExpression | ’<’

NumericExpression | ’>’ NumericExpression | ’<=’ NumericExpression |

’>=’ NumericExpression )?

[51] NumericExpression ::= AdditiveExpression

[52] AdditiveExpression ::= MultiplicativeExpression ( ’+’

MultiplicativeExpression | ’-’

MultiplicativeExpression | NumericLiteralPositive |

NumericLiteralNegative )*
[53] MultiplicativeExpression ::= UnaryExpression ( ’*’ UnaryExpression

| ’/’ UnaryExpression )*
[54] UnaryExpression ::= ’!’ PrimaryExpression

| ’+’ PrimaryExpression

| ’-’ PrimaryExpression

| PrimaryExpression

[55] PrimaryExpression ::= BrackettedExpression | BuiltInCall |

IRIrefOrFunction | RDFLiteral |

NumericLiteral | BooleanLiteral | Var

[56] BrackettedExpression ::= ’(’ Expression ’)’

[57] BuiltInCall ::= ’str’ ’(’ Expression ’)’

| ’lang’ ’(’ Expression ’)’

| ’langmatches’ ’(’ Expression ’,’ Expression ’)’

| ’datatype’ ’(’ Expression ’)’

| ’bound’ ’(’ Var ’)’

| ’sameterm’ ’(’ Expression ’,’ Expression ’)’

| ’isiri’ ’(’ Expression ’)’

| ’isuri’ ’(’ Expression ’)’

| ’isblank’ ’(’ Expression ’)’

| ’isliteral’ ’(’ Expression ’)’

| RegexExpression
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[58] RegexExpression ::= ’REGEX’ ’(’ Expression ’,’ Expression ( ’,’

Expression )? ’)’

[59] IRIrefOrFunction ::= IRIref ArgList?

[60] RDFLiteral ::= String ( LANGTAG | ( ’^^’ IRIref ) )?

[60’]RDFLiteral’ ::= String’ ( LANGTAG

| ’@{’ FLWORExpr ’}’ | ( ’^^’ IRIref’) )?

[61] NumericLiteral ::= NumericLiteralUnsigned | NumericLiteralPositive

| NumericLiteralNegative

[62] NumericLiteralUnsigned ::= INTEGER | DECIMAL | DOUBLE

[63] NumericLiteralPositive ::= INTEGER_POSITIVE | DECIMAL_POSITIVE |

DOUBLE_POSITIVE

[64] NumericLiteralNegative ::= INTEGER_NEGATIVE | DECIMAL_NEGATIVE |

DOUBLE_NEGATIVE

[65] BooleanLiteral ::= ’true’ | ’false’

[66] String ::= STRING_LITERAL1 | STRING_LITERAL2 | STRING_LITERAL_LONG1

| STRING_LITERAL_LONG2

[66’]String’ ::= STRING_LITERAL1 | STRING_LITERAL2 |

STRING_LITERAL_LONG1 |

STRING_LITERAL_LONG2 | ’{’ FLWORExpr ’}’

[67] IRIref ::= IRI_REF | PrefixedName

[67’]IRIref’ ::= IRI_REF | ’<{’ FLWORExpr ’}>’ | PrefixedName’

[68] PrefixedName ::= PNAME_LN | PNAME_NS

[68’]PrefixedName’ ::=PNAME_LN ( (PN_PREFIX | ’{’ FLWORExpr ’}’)? ’:’

(PN_LOCAL | ’{’ FLWORExpr ’}’) ) | PNAME_NS

[69] BlankNode ::= BLANK_NODE_LABEL | ANON

[69’]BlankNode’ ::= BLANK_NODE_LABEL | ANON | ’_:{’ FLWORExpr ’}’

Terminals

[70] IRI_REF ::= ’<’ ([^<>"{}|^‘\]-[#x00-#x20])* ’>’

[71] PNAME_NS ::= PN_PREFIX? ’:’

[72] PNAME_LN ::= PNAME_NS PN_LOCAL

[73] BLANK_NODE_LABEL ::= ’_:’ PN_LOCAL

[74] VAR1 ::= ’?’ VARNAME

[75] VAR2 ::= ’$’ VARNAME

[76] LANGTAG ::= ’@’ [a-zA-Z]+ (’-’ [a-zA-Z0-9]+)*
[77] INTEGER ::=[0-9]+

[78] DECIMAL ::=[0-9]+ ’.’ [0-9]* | ’.’ [0-9]+

[79] DOUBLE ::=[0-9]+ ’.’ [0-9]* EXPONENT | ’.’ ([0-9])+ EXPONENT |

([0-9])+ EXPONENT

[80] INTEGER_POSITIVE ::= ’+’ INTEGER

[81] DECIMAL_POSITIVE ::= ’+’ DECIMAL

[82] DOUBLE_POSITIVE ::= ’+’ DOUBLE

[83] INTEGER_NEGATIVE ::= ’-’ INTEGER

[84] DECIMAL_NEGATIVE ::= ’-’ DECIMAL

[85] DOUBLE_NEGATIVE ::= ’-’ DOUBLE

[86] EXPONENT ::=[eE] [+-]? [0-9]+

[87] STRING_LITERAL1 ::= "’" ( ([^#x27#x5C#xA#xD]) | ECHAR )* "’"
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[88] STRING_LITERAL2 ::= ’"’ ( ([^#x22#x5C#xA#xD]) | ECHAR )* ’"’

[89] STRING_LITERAL_LONG1 ::= "’’’" ( ( "’" | "’’" )? ( [^’\] | ECHAR )

)* "’’’"

[90] STRING_LITERAL_LONG2 ::= ’"""’ ( ( ’"’ | ’""’ )? ( [^"\] | ECHAR )

)* ’"""’

[91] ECHAR ::= ’\’ [tbnrf\"’]

[92] NIL ::= ’(’ WS* ’)’

[93] WS ::= #x20 | #x9 | #xD | #xA

[94] ANON ::= ’[’ WS* ’]’

[95] PN_CHARS_BASE ::=[A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6]

| [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#x200C-#

x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#

xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

[96] PN_CHARS_U ::= PN_CHARS_BASE | ’_’

[97] VARNAME ::= ( PN_CHARS_U - ’_’ | [0-9] ) ( PN_CHARS_U | [0-9] | #

x00B7 | [#x0300-#x036F] | [#x203F-#x2040] )*
[98] PN_CHARS ::= PN_CHARS_U | ’-’ | [0-9] | #x00B7 | [#x0300-#x036F] |

[#x203F-#x2040]

[99] PN_PREFIX ::= PN_CHARS_BASE ((PN_CHARS|’.’)* PN_CHARS)?

[100] PN_LOCAL ::= ( PN_CHARS_U | [0-9] ) ((PN_CHARS|’.’)* PN_CHARS)?

Note that SPARQL local names allow leading digits while XML local names

do not.

A.3 XML Grammar

This section gives the grammar production rules for XML [Bray et al., 2008].

[1] document ::= prolog element Misc*
[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#

x10000-#x10FFFF] /* any Unicode character, excluding the surrogate

blocks, FFFE, and FFFF. */

[3] S ::= (#x20 | #x9 | #xD | #xA)+

[4] NameStartChar ::= ":" | [A-Z] | "_" | [a-z] | [#xC0-#xD6] | [#xD8-#

xF6] | [#xF8-#x2FF] | [#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#

x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#

xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

[4a] NameChar ::= NameStartChar | "-" | "." | [0-9] | #xB7 | [#x0300-#

x036F] | [#x203F-#x2040]

[5] Name ::= NameStartChar (NameChar)*
[6] Names ::= Name (#x20 Name)*
[7] Nmtoken ::= (NameChar)+

[8] Nmtokens ::= Nmtoken (#x20 Nmtoken)*
[9] EntityValue ::= ’"’ ([^%&"] | PEReference | Reference)* ’"’

| "’" ([^%&’] | PEReference | Reference)* "’"

[10] AttValue ::= ’"’ ([^<&"] | Reference)* ’"’

| "’" ([^<&’] | Reference)* "’"

[11] SystemLiteral ::= (’"’ [^"]* ’"’) | ("’" [^’]* "’")

[12] PubidLiteral ::= ’"’ PubidChar* ’"’ | "’" (PubidChar - "’")* "’"
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[13] PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-’()+,./:=?;!*#@$_

%]

[14] CharData ::= [^<&]* - ([^<&]* ’]]>’ [^<&]*)

[15] Comment ::= ’<!--’ ((Char - ’-’) | (’-’ (Char - ’-’)))* ’-->’

[16] PI ::= ’<?’ PITarget (S (Char* - (Char* ’?>’ Char*)))? ’?>’

[17] PITarget ::= Name - ((’X’ | ’x’) (’M’ | ’m’) (’L’ | ’l’))

[18] CDSect ::= CDStart CData CDEnd

[19] CDStart ::= ’<![CDATA[’

[20] CData ::= (Char* - (Char* ’]]>’ Char*))

[21] CDEnd ::= ’]]>’

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

[23] XMLDecl ::= ’<?xml’ VersionInfo EncodingDecl? SDDecl? S? ’?>’

[24] VersionInfo ::= S ’version’ Eq ("’" VersionNum "’" | ’"’

VersionNum ’"’)

[25] Eq ::= S? ’=’ S?

[26] VersionNum ::= ’1.’ [0-9]+

[27] Misc ::= Comment | PI | S

[28] doctypedecl ::= ’<!DOCTYPE’ S Name (S ExternalID)? S? (’[’

intSubset ’]’ S?)? ’>’ [VC: Root Element Type]

[WFC: External Subset]

[28a] DeclSep ::= PEReference | S [WFC: PE Between Declarations]

[28b] intSubset ::= (markupdecl | DeclSep)*
[29] markupdecl ::= elementdecl | AttlistDecl | EntityDecl |

NotationDecl | PI | Comment [VC: Proper Declaration/PE Nesting]

[WFC: PEs in Internal Subset]

[30] extSubset ::= TextDecl? extSubsetDecl

[31] extSubsetDecl ::= ( markupdecl | conditionalSect | DeclSep)*
[32] SDDecl ::= S ’standalone’ Eq (("’" (’yes’ | ’no’) "’") | (’"’ (’

yes’ | ’no’) ’"’))

(Productions 33 through 38 have been removed.)

[39] element ::= EmptyElemTag

| STag content ETag [WFC: Element Type Match]

[VC: Element Valid]

[40] STag ::= ’<’ Name (S Attribute)* S? ’>’ [WFC: Unique Att Spec]

[41] Attribute ::= Name Eq AttValue [VC: Attribute Value Type]

[WFC: No External Entity References]

[WFC: No < in Attribute Values]

[42] ETag ::= ’</’ Name S? ’>’

[43] content ::= CharData? ((element | Reference | CDSect | PI |

Comment) CharData?)*
[44] EmptyElemTag ::= ’<’ Name (S Attribute)* S? ’/>’ [WFC: Unique Att

Spec]

[45] elementdecl ::= ’<!ELEMENT’ S Name S contentspec S? ’>’ [VC:

Unique Element Type Declaration]

[46] contentspec ::= ’EMPTY’ | ’ANY’ | Mixed | children

[47] children ::= (choice | seq) (’?’ | ’*’ | ’+’)?

[48] cp ::= (Name | choice | seq) (’?’ | ’*’ | ’+’)?
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[49] choice ::= ’(’ S? cp ( S? ’|’ S? cp )+ S? ’)’ [VC: Proper Group/PE

Nesting]

[50] seq ::= ’(’ S? cp ( S? ’,’ S? cp )* S? ’)’ [VC: Proper Group/PE

Nesting]

[51] Mixed ::= ’(’ S? ’#PCDATA’ (S? ’|’ S? Name)* S? ’)*’

| ’(’ S? ’#PCDATA’ S? ’)’ [VC: Proper Group/PE Nesting]

[VC: No Duplicate Types]

[52] AttlistDecl ::= ’<!ATTLIST’ S Name AttDef* S? ’>’

[53] AttDef ::= S Name S AttType S DefaultDecl

[54] AttType ::= StringType | TokenizedType | EnumeratedType

[55] StringType ::= ’CDATA’

[56] TokenizedType ::= ’ID’ [VC: ID]

[VC: One ID per Element Type]

[VC: ID Attribute Default]

| ’IDREF’ [VC: IDREF]

| ’IDREFS’ [VC: IDREF]

| ’ENTITY’ [VC: Entity Name]

| ’ENTITIES’ [VC: Entity Name]

| ’NMTOKEN’ [VC: Name Token]

| ’NMTOKENS’ [VC: Name Token]

[57] EnumeratedType ::= NotationType | Enumeration

[58] NotationType ::= ’NOTATION’ S ’(’ S? Name (S? ’|’ S? Name)* S? ’)’

[VC: Notation Attributes]

[VC: One Notation Per Element Type]

[VC: No Notation on Empty Element]

[VC: No Duplicate Tokens]

[59] Enumeration ::= ’(’ S? Nmtoken (S? ’|’ S? Nmtoken)* S? ’)’ [VC:

Enumeration]

[VC: No Duplicate Tokens]

[60] DefaultDecl ::= ’#REQUIRED’ | ’#IMPLIED’

| ((’#FIXED’ S)? AttValue) [VC: Required Attribute]

[VC: Attribute Default Value Syntactically Correct]

[WFC: No < in Attribute Values]

[VC: Fixed Attribute Default]

[WFC: No External Entity References]

[61] conditionalSect ::= includeSect | ignoreSect

[62] includeSect ::= ’<![’ S? ’INCLUDE’ S? ’[’ extSubsetDecl ’]]>’ [VC:

Proper Conditional Section/PE Nesting]

[63] ignoreSect ::= ’<![’ S? ’IGNORE’ S? ’[’ ignoreSectContents* ’]]>’

[VC: Proper Conditional Section/PE Nesting]

[64] ignoreSectContents ::= Ignore (’<![’ ignoreSectContents ’]]>’

Ignore)*
[65] Ignore ::= Char* - (Char* (’<![’ | ’]]>’) Char*)

[66] CharRef ::= ’&#’ [0-9]+ ’;’

| ’&#x’ [0-9a-fA-F]+ ’;’ [WFC: Legal Character]

[67] Reference ::= EntityRef | CharRef

[68] EntityRef ::= ’&’ Name ’;’ [WFC: Entity Declared]
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[VC: Entity Declared]

[WFC: Parsed Entity]

[WFC: No Recursion]

[69] PEReference ::= ’%’ Name ’;’ [VC: Entity Declared]

[WFC: No Recursion]

[WFC: In DTD]

[70] EntityDecl ::= GEDecl | PEDecl

[71] GEDecl ::= ’<!ENTITY’ S Name S EntityDef S? ’>’

[72] PEDecl ::= ’<!ENTITY’ S ’%’ S Name S PEDef S? ’>’

[73] EntityDef ::= EntityValue | (ExternalID NDataDecl?)

[74] PEDef ::= EntityValue | ExternalID

[75] ExternalID ::= ’SYSTEM’ S SystemLiteral

| ’PUBLIC’ S PubidLiteral S SystemLiteral

[76] NDataDecl ::= S ’NDATA’ S Name [VC: Notation Declared]

[77] TextDecl ::= ’<?xml’ VersionInfo? EncodingDecl S? ’?>’

[78] extParsedEnt ::= TextDecl? content

[80] EncodingDecl ::= S ’encoding’ Eq (’"’ EncName ’"’ | "’" EncName

"’" )

[81] EncName ::= [A-Za-z] ([A-Za-z0-9._] | ’-’)* /* Encoding name

contains only Latin characters */

[82] NotationDecl ::= ’<!NOTATION’ S Name S (ExternalID | PublicID) S?

’>’ [VC: Unique Notation Name]

[83] PublicID ::= ’PUBLIC’ S PubidLiteral

A.4 XML Namespaces Grammar

XML Namespaces [Layman et al., 1999], as being an important part of the
XML world, are given in this section.

[1] NSAttName ::= PrefixedAttName | DefaultAttName

[2] PrefixedAttName ::= ’xmlns:’ NCName [NSC: Reserved Prefixes and

Namespace Names]

[3] DefaultAttName ::= ’xmlns’

[4] NCName ::= Name - (Char* ’:’ Char*) /* An XML Name, minus the ":" */

[5] NCNameChar Orphaned

[6] NCNameStartChar Orphaned

[7] QName ::= PrefixedName | UnprefixedName

[8] PrefixedName ::= Prefix ’:’ LocalPart

[9] UnprefixedName ::= LocalPart

[10] Prefix ::= NCName

[11] LocalPart ::= NCName

[12] STag ::= ’<’ QName (S Attribute)* S? ’>’ [NSC: Prefix Declared]

[13] ETag ::= ’</’ QName S? ’>’ [NSC: Prefix Declared]

[14] EmptyElemTag ::= ’<’ QName (S Attribute)* S? ’/>’ [NSC: Prefix

Declared]
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[15] Attribute ::= NSAttName Eq AttValue | QName Eq AttValue [NSC:

Prefix Declared]

[NSC: No Prefix Undeclaring]

[NSC: Attributes Unique]

[16] doctypedecl ::= ’<!DOCTYPE’ S QName (S ExternalID)? S? (’[’ (

markupdecl | PEReference | S)* ’]’ S?)? ’>’

[17] elementdecl ::= ’<!ELEMENT’ S QName S contentspec S? ’>’

[18] cp ::= (QName | choice | seq) (’?’ | ’*’ | ’+’)?

[19] Mixed ::= ’(’ S? ’#PCDATA’ (S? ’|’ S? QName)* S? ’)*’ | ’(’ S? ’#

PCDATA’ S? ’)’

[20] AttlistDecl ::= ’<!ATTLIST’ S QName AttDef* S? ’>’

[21] AttDef ::= S (QName | NSAttName) S AttType S DefaultDecl

A.5 Turtle Grammar

Turtle [Beckett and Berners-Lee, 2008] is a more concise and intuitive RDF
serialisation syntax than RDF/XML.

[1] turtleDoc ::= statement*
[2] statement ::= directive ’.’ | triples ’.’ | ws+

[3] directive ::= prefixID | base

[4] prefixID ::= ’@prefix’ ws+ prefixName? ’:’ uriref

[5] base ::= ’@base’ ws+ uriref

[6] triples ::= subject predicateObjectList

[7] predicateObjectList ::= verb objectList ( ’;’ verb objectList )* (

’;’)?

[8] objectList ::= object ( ’,’ object)*
[9] verb ::= predicate | ’a’

[10] comment ::= ’#’ ( [^#xA#xD] )*
[11] subject ::= resource | blank

[12] predicate ::= resource

[13] object ::= resource | blank | literal

[14] literal ::= quotedString ( ’@’ language )? | datatypeString |

integer | double | decimal | boolean

[15] datatypeString ::= quotedString ’^^’ resource

[16] integer ::= (’-’ | ’+’) ? [0-9]+

[17] double ::= (’-’ | ’+’) ? ( [0-9]+ ’.’ [0-9]* exponent | ’.’

([0-9])+ exponent | ([0-9])+ exponent )

[18] decimal ::= (’-’ | ’+’)? ( [0-9]+ ’.’ [0-9]* | ’.’ ([0-9])+ |

([0-9])+ )

[19] exponent ::= [eE] (’-’ | ’+’)? [0-9]+

[20] boolean ::= ’true’ | ’false’

[21] blank ::= nodeID | ’[]’ | ’[’ predicateObjectList ’]’ | collection

[22] itemList ::= object+

[23] collection ::= ’(’ itemList? ’)’

[24] ws ::= #x9 | #xA | #xD | #x20 | comment
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[25] resource ::= uriref | qname

[26] nodeID ::= ’_:’ name

[27] qname ::= prefixName? ’:’ name?

[28] uriref ::= ’<’ relativeURI ’>’

[29] language ::= [a-z]+ (’-’ [a-z0-9]+ )*
[30] nameStartChar ::= [A-Z] | "_" | [a-z] | [#x00C0-#x00D6] | [#x00D8

-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#

x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF]

| [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

[31] nameChar ::= nameStartChar | ’-’ | [0-9] | #x00B7 | [#x0300-#

x036F] | [#x203F-#x2040]

[32] name ::= nameStartChar nameChar*
[33] prefixName ::= ( nameStartChar - ’_’ ) nameChar*
[34] relativeURI ::= ucharacter*
[35] quotedString ::= string | longString

[36] string ::= #x22 scharacter* #x22

[37] longString ::= #x22 #x22 #x22 lcharacter* #x22 #x22 #x22

[38] character ::= ’\u’ hex hex hex hex |

’\U’ hex hex hex hex hex hex hex hex |

’\\’ |

[#x20-#x5B] | [#x5D-#x10FFFF]

[39] echaracter ::= character | ’\t’ | ’\n’ | ’\r’

[40] hex ::= [#x30-#x39] | [#x41-#x46]

[41] ucharacter ::= ( character - #x3E ) | ’\>’

[42] scharacter ::= ( echaracter - #x22 ) | ’\"’

[43] lcharacter ::= echaracter | ’\"’ | #x9 | #xA | #xD
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Evaluation Queries

The queries for the evaluation in Chapter 6 are presented in this appendix.
Three sets of queries were used: the original XMark [Schmidt et al., 2002]
queries shown in Section B.1, the XMark queries translated to XSPARQL
shown in Section B.2 and the optimised XSPARQL queries 8, 9 and 10 presen-
ted in Section B.3.

In the following list we give the original explanation1 for every XMark
query from query #1 to query #20. The query explanations apply for the
queries of all following sections.

1. Return the name of the person with ID person0.

2. Return the initial increases of all open auctions.

3. Return the IDs of all open auctions whose current increase is at least
twice as high as the initial increase.

4. List the reserves of those open auctions where a certain person issued
a bid before another person.

5. How many sold items cost more than 40?

6. How many items are listed on all continents?

7. How many pieces of prose are in our database?

8. List the names of persons and the number of items they bought. (joins
person, closed_auction)

9. List the names of persons and the names of the items they bought in
Europe. (joins person, closed_auction, item)

1as given by the official XMark queries at http://www.ins.cwi.nl/projects/xmark/
Assets/xmlquery.txt

http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
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10. List all persons according to their interest; use French markup in the
result.

11. For each person, list the number of items currently on sale whose price
does not exceed 0.02% of the person’s income.

12. For each richer-than-average person, list the number of items currently
on sale whose price does not exceed 0.02% of the person’s income.

13. List the names of items registered in Australia along with their descrip-
tions.

14. Return the names of all items whose description contains the word
‘gold’.

15. Print the keywords in emphasis in annotations of closed auctions.

16. Return the IDs of those auctions that have one or more keywords in
emphasis. (cf. Q15)

17. Which persons don’t have a homepage?

18. Convert the currency of the reserve of all open auctions to another
currency.

19. Give an alphabetically ordered list of all items along with their location.

20. Group customers by their income and output the cardinality of each
group.

B.1 Original XMark Benchmark Queries

The first set of benchmark queries are the original XMark benchmark queries2.
The only thing changed, is the way to access the XML source document:
instead of using the fn:doc function, the query URL is passed to the query as
external variable. This measure simplified benchmark execution.

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $b in $auction/site/people/person[@id = "person0"] return $b/name/

text()

Listing B.1: XMark Query 1

2http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt
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1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $b in $auction/site/open_auctions/open_auction
5 return <increase>{$b/bidder[1]/increase/text()}</increase>

Listing B.2: XMark Query 2

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $b in $auction/site/open_auctions/open_auction
5 where zero-or-one($b/bidder[1]/increase/text()) * 2 <= $b/bidder[last()

]/increase/text()
6 return
7 <increase
8 first="{$b/bidder[1]/increase/text()}"
9 last="{$b/bidder[last()]/increase/text()}"/>

Listing B.3: XMark Query 3

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $b in $auction/site/open_auctions/open_auction
5 where
6 some $pr1 in $b/bidder/personref[@person = "person20"],
7 $pr2 in $b/bidder/personref[@person = "person51"]
8 satisfies $pr1 << $pr2
9 return <history>{$b/reserve/text()}</history>

Listing B.4: XMark Query 4

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 count(
5 for $i in $auction/site/closed_auctions/closed_auction
6 where $i/price/text() >= 40
7 return $i/price
8 )

Listing B.5: XMark Query 5
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1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $b in $auction//site/regions return count($b//item)

Listing B.6: XMark Query 6

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $p in $auction/site
5 return
6 count($p//description) + count($p//annotation) + count($p//

emailaddress)

Listing B.7: XMark Query 7

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $p in $auction/site/people/person
5 let $a :=
6 for $t in $auction/site/closed_auctions/closed_auction
7 where $t/buyer/@person = $p/@id
8 return $t
9 return <item person="{$p/name/text()}">{count($a)}</item>

Listing B.8: XMark Query 8

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 let $ca := $auction/site/closed_auctions/closed_auction return
5 let
6 $ei := $auction/site/regions/europe/item
7 for $p in $auction/site/people/person
8 let $a :=
9 for $t in $ca

10 where $p/@id = $t/buyer/@person
11 return
12 let $n := for $t2 in $ei where $t/itemref/@item = $t2/@id return $t2
13 return <item>{$n/name/text()}</item>
14 return <person name="{$p/name/text()}">{$a}</person>

Listing B.9: XMark Query 9
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1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $i in
5 distinct-values($auction/site/people/person/profile/interest/@category

)
6 let $p :=
7 for $t in $auction/site/people/person
8 where $t/profile/interest/@category = $i
9 return

10 <personne>
11 <statistiques>
12 <sexe>{$t/profile/gender/text()}</sexe>
13 <age>{$t/profile/age/text()}</age>
14 <education>{$t/profile/education/text()}</education>
15 <revenu>{fn:data($t/profile/@income)}</revenu>
16 </statistiques>
17 <coordonnees>
18 <nom>{$t/name/text()}</nom>
19 <rue>{$t/address/street/text()}</rue>
20 <ville>{$t/address/city/text()}</ville>
21 <pays>{$t/address/country/text()}</pays>
22 <reseau>
23 <courrier>{$t/emailaddress/text()}</courrier>
24 <pagePerso>{$t/homepage/text()}</pagePerso>
25 </reseau>
26 </coordonnees>
27 <cartePaiement>{$t/creditcard/text()}</cartePaiement>
28 </personne>
29 return <categorie>{<id>{$i}</id>, $p}</categorie>

Listing B.10: XMark Query 10

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $p in $auction/site/people/person
5 let $l :=
6 for $i in $auction/site/open_auctions/open_auction/initial
7 where $p/profile/@income > 5000 * exactly-one($i/text())
8 return $i
9 return <items name="{$p/name/text()}">{count($l)}</items>

Listing B.11: XMark Query 11
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1

2 declare variable $graph external;
3

4 let $auction := doc($graph) return
5 for $p in $auction/site/people/person
6 let $l :=
7 for $i in $auction/site/open_auctions/open_auction/initial
8 where $p/profile/@income > 5000 * exactly-one($i/text())
9 return $i

10 where $p/profile/@income > 50000
11 return <items person="{$p/profile/@income}">{count($l)}</items>

Listing B.12: XMark Query 12

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $i in $auction/site/regions/australia/item
5 return <item name="{$i/name/text()}">{$i/description}</item>

Listing B.13: XMark Query 13

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $i in $auction/site//item
5 where contains(string(exactly-one($i/description)), "gold")
6 return $i/name/text()

Listing B.14: XMark Query 14

1

2 let $auction := doc($graph) return
3 for $a in
4 $auction/site/closed_auctions/closed_auction/annotation/description/

parlist/
5 listitem/
6 parlist/
7 listitem/
8 text/
9 emph/

10 keyword/
11 text()
12 return <text>{$a}</text>

Listing B.15: XMark Query 15
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1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $a in $auction/site/closed_auctions/closed_auction
5 where
6 not(
7 empty(
8 $a/annotation/description/parlist/listitem/parlist/listitem/text/

emph/
9 keyword/

10 text()
11 )
12 )
13 return <person id="{$a/seller/@person}"/>

Listing B.16: XMark Query 16

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $p in $auction/site/people/person
5 where empty($p/homepage/text())
6 return <person name="{$p/name/text()}"/>

Listing B.17: XMark Query 17

1 declare namespace local = "http://www.foobar.org";
2 declare variable $graph external;
3

4 declare function local:convert($v as xs:decimal?) as xs:decimal?
5 {
6 2.20371 * $v (: convert Dfl to Euro :)
7 };
8

9 let $auction := doc($graph) return
10 for $i in $auction/site/open_auctions/open_auction
11 return local:convert(zero-or-one($i/reserve))

Listing B.18: XMark Query 18
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1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 for $b in $auction/site/regions//item
5 let $k := $b/name/text()
6 order by zero-or-one($b/location) ascending empty greatest
7 return <item name="{$k}">{$b/location/text()}</item>

Listing B.19: XMark Query 19

1 declare variable $graph external;
2

3 let $auction := doc($graph) return
4 <result>
5 <preferred>
6 {count($auction/site/people/person/profile[@income >= 100000])}
7 </preferred>
8 <standard>
9 {

10 count(
11 $auction/site/people/person/
12 profile[@income < 100000 and @income >= 30000]
13 )
14 }
15 </standard>
16 <challenge>
17 {count($auction/site/people/person/profile[@income < 30000])}
18 </challenge>
19 <na>
20 {
21 count(
22 for $p in $auction/site/people/person
23 where empty($p/profile/@income)
24 return $p
25 )
26 }
27 </na>
28 </result>

Listing B.20: XMark Query 20
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B.2 XSPARQL Benchmark Queries

This section contains the queries of the XMark XQuery benchmark suite
[Schmidt et al., 2002] translated to XSPARQL.

1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $graph external;
4

5 for *
6 from $graph
7 where { $person a foaf:Person;
8 :id "person0";
9 foaf:name $name }

10 return $name

Listing B.21: XSPARQL Query 1

1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 for $increase
5 from $graph
6 where { $auction a :OpenAuction .
7 $bid a :Bid;
8 :onAuction $auction;
9 :order 1;

10 :increase $increase }
11 return <increase>{$increase}</increase>

Listing B.22: XSPARQL Query 2
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1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 for $increase $increase2
5 from $graph
6 where { $auction a :OpenAuction .
7 [] a :Bid;
8 :onAuction $auction;
9 :order 1 ;

10 :increase $increase.
11 [] a :Bid;
12 :onAuction $auction;
13 :order $order ;
14 :increase $increase2;
15 filter($increase * 2 <= $increase2 )
16 optional {
17 [] a :Bid ; :onAuction $auction ; :order $o2 .
18 filter($o2 > $order)
19 }
20 filter(!bound($o2))
21 }
22 return <increase
23 first="{$increase}"
24 last="{$increase2}"/>

Listing B.23: XSPARQL Query 3

1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $graph external;
4

5 for $reserve
6 from $graph
7 where { $b1 a :Bid ;
8 :bidder [ :id "person20" ] ;
9 :order $o1 ;

10 :onAuction $a .
11 $b2 a :Bid ;
12 :bidder [ :id "person51" ] ;
13 :order $o2 ;
14 :onAuction $a .
15 filter($o1 < $o2)
16 $a a :OpenAuction ;
17 :reserve $reserve .
18 }
19 return <history>{$reserve}</history>

Listing B.24: XSPARQL Query 4
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1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 let $x := for $price
5 from $graph
6 where {
7 [ a :ClosedAuction ;
8 :price $price ] .
9 filter($price >= 40)

10 }
11 return $price
12 return count($x)

Listing B.25: XSPARQL Query 5

1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 count(
5 for *
6 from $graph
7 where {
8 $item a :Item ;
9 :locatedIn [] .

10 }
11 return $item
12 )

Listing B.26: XSPARQL Query 6

1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $graph external;
4

5 count (
6 for *
7 from $graph
8 where {
9 { $x :description [] .}

10 union
11 { $x foaf:mbox [] . }
12 }
13 return $x
14 )

Listing B.27: XSPARQL Query 7
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1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $graph external;
4

5 for $id $name
6 from $graph
7 where {
8 $person a foaf:Person ;
9 :id $id ;

10 foaf:name $name .
11 }
12 return <item person="{$name}">
13 {
14 let $x := for * from $graph
15 where {
16 $ca a :ClosedAuction ;
17 :buyer [ :id $id ] .
18 }
19 return $ca
20 return count($x)
21 }
22 </item>

Listing B.28: XSPARQL Query 8
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1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $graph external;
4

5 for $id $name
6 from $graph
7 where {
8 [] a foaf:Person ;
9 foaf:name $name ;

10 :id $id.
11 }
12 return
13 <person name="{$name}">
14 {
15 for *
16 from $graph
17 where {
18 [] :buyer [:id $id];
19 a :ClosedAuction ;
20 :itemRef [
21 :locatedIn [ a :Region ;
22 :name "europe" ] ;
23 :name $itemname
24 ] .
25 }
26 return <item>{$itemname}</item>
27 }
28 </person>

Listing B.29: XSPARQL Query 9
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1 prefix : <http://xsparql.deri.org/data/>

2 prefix foaf: <http://xmlns.com/foaf/0.1/>

3 declare variable $graph external;

4

5 for distinct $catid

6 from $graph

7 where {

8 $category a :Category ;

9 :id $catid.

10 }

11

12 return

13 <categorie><id>{$catid}</id>

14 {

15 for *
16 from $graph

17 where {

18 $profile a :PersonalProfile ;

19 :ofPerson $person ;

20 :interest [ a :Category ;

21 :id $catid ] .

22

23 optional { $profile :gender $gender . }

24 optional { $profile :age $age . }

25 optional { $profile :education $education . }

26 optional { $profile :income $income . }

27

28 optional { $person foaf:name $name . }

29 optional { $person foaf:mbox $email . }

30 optional { $person foaf:homepage $homepage . }

31 }

32 return

33 <personne>

34 <statistiques>

35 <sexe>{$gender}</sexe>

36 <age>{$age}</age>

37 <education>{$education}</education>

38 <revenu>{$income}</revenu>

39 </statistiques>

40 <coordonnees>

41 <nom></nom>

42 <rue></rue>

43 <ville></ville>

44 <pays></pays>

45 <reseau>

46 <courrier>{$email}</courrier>

47 <pagePerso>{$homepage}</pagePerso>
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48 </reseau>

49 </coordonnees>

50 <cartePaiement></cartePaiement>

51 </personne>

52 }

53 </categorie>

Listing B.30: XSPARQL Query 10

1 prefix : <http://xsparql.deri.org/data/>

2 prefix foaf: <http://xmlns.com/foaf/0.1/>

3 declare variable $graph external;

4

5 for * from $graph

6 where {

7 [] :ofPerson $person ; :income $income .

8 $person a foaf:Person ; foaf:name $name .

9 }

10 let $l :=

11 for * from $graph

12 where {

13 [] a :OpenAuction ; :initialValue $initialValue .

14 filter($income > 5000 * $initialValue)

15 }

16 return $initialValue

17 return <items name="{$name}">{count($l)}</items>

Listing B.31: XSPARQL Query 11
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1

2 prefix : <http://xsparql.deri.org/data/>
3 declare variable $graph external;
4

5 for * from $graph
6 where {
7 [] a :PersonalProfile; :income $income .
8 filter($income > 50000)
9 }

10 let $l :=
11 for * from $graph
12 where {
13 [] a :OpenAuction ; :initialValue $initialValue .
14 filter($income > 5000 * $initialValue)
15 }
16 return $initialValue
17 return <items person="{$income}">{count($l)}</items>

Listing B.32: XSPARQL Query 12

1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 #let $auction := doc("auction.xml") return
5 #for $i in $auction/site/regions/australia/item
6 #return <item name="{$i/name/text()}">{$i/description}</item>
7

8 for *
9 from $graph

10 where {
11 [] a :Item ;
12 :locatedIn [ a :Region ; :name "australia" ] ;
13 :name $name ;
14 :description $desc .
15 }
16 return <item name="{$name}">{$desc}</item>

Listing B.33: XSPARQL Query 13

158



B.2. XSPARQL Benchmark Queries

1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 for $name from $graph
5 where {
6 $i a :Item ; :description $d .
7 filter regex($d, "gold")
8 $i :name $name .
9 }

10 return $name

Listing B.34: XSPARQL Query 14

1 because saxon:parse creates XML in the empty namespace :)
2

3 prefix t: <http://xsparql.deri.org/data/>
4 declare namespace saxon="http://saxon.sf.net/";
5 declare variable $graph external;
6

7 for $desc
8 from $graph
9 where {

10 [] t:auction [a t:ClosedAuction]; t:description $desc
11 }
12 return
13 for $b in saxon:parse(fn:data($desc))
14 for $a in $b/text/emph/keyword/text()
15 return <text>{$a}</text>

Listing B.35: XSPARQL Query 15

1 prefix t: <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 for $desc $id
5 from $graph
6 where {
7 [] t:auction [a t:ClosedAuction; t:seller [t:id $id]]; t:description

$desc
8 }
9 for $b in saxon:parse(fn:data($desc))

10 for $a in $b/text/emph/keyword/text()[1]
11 return <person id="{$id}"/>

Listing B.36: XSPARQL Query 16
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1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $graph external;
4

5 for $name
6 from $graph
7 where {
8 $person a foaf:Person ;
9 foaf:name $name .

10 optional {
11 $person foaf:homepage $homepage.
12 }
13 filter(!bound($homepage)).
14 }
15 return <person name="{$name}"/>

Listing B.37: XSPARQL Query 17

1 prefix : <http://xsparql.deri.org/data/>
2

3 declare namespace local = "http://www.foobar.org";
4 declare function local:convert($v as xs:decimal) as xs:decimal
5 {
6 2.20371 * $v (: Convert Dfl to Euro :)
7 };
8 declare variable $graph external;
9 for *

10 from $graph
11 where {
12 [] a :OpenAuction ; :reserve $reserve .
13 }
14 return local:convert($reserve)

Listing B.38: XSPARQL Query 18
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1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 #let $auction := doc("auction.xml") return
5 #for $b in $auction/site/regions//item
6 #let $k := $b/name/text()
7 #order by zero-or-one($b/location) ascending empty greatest
8 #return <item name="{$k}">{$b/location/text()}</item>
9

10 for * from $graph
11 where {
12 [] a :Item ;
13 :name $name ;
14 :location $location .
15 }
16 order by $name
17 return <item name="{$name}">{$location}</item>

Listing B.39: XSPARQL Query 19
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1 prefix : <http://xsparql.deri.org/data/>
2 declare variable $graph external;
3

4 <result>
5 <preferred>
6 { let $l := for * from $graph
7 where { [] :income $income . filter($income >= 100000) }
8 return $income
9 return count($l)

10 }
11 </preferred>
12 <standard>
13 { let $l := for * from $graph
14 where { [] :income $income . filter($income >= 30000 && $income

< 100000) }
15 return $income
16 return count($l)
17 }
18 </standard>
19 <challenge>
20 { let $l := for * from $graph
21 where { [] :income $income . filter($income < 30000) }
22 return $income
23 return count($l)
24 }
25 </challenge>
26 <na>
27 {
28 let $l := for * from $graph
29 where { $pp a :PersonalProfile . optional{ $pp :income $income .

} filter(!bound($income)) }
30 return $income
31 return count($l)
32 }
33 </na>
34 </result>

Listing B.40: XSPARQL Query 20
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B.3 XDEP Optimised Queries

The last set of queries were built by applying our optimisation approach of
Chapter 5 to the relevant queries of the last section. The queries here are
given as pure XQuery queries to show the rewriting.

1 import module namespace _xsparql = "http://xsparql.deri.org/demo/xquery/

xsparql.xquery" at "http://xsparql.deri.org/demo/xquery/xsparql-

types.xquery";

2 declare namespace _javaSaxon = "java:org.deri.sparql.Sparql";

3 (: declare default element namespace "http://xsparql.deri.org/data/"; :)

4 declare namespace foaf = "http://xmlns.com/foaf/0.1/";

5 declare variable $graph external;

6

7 let $_aux_results4 := _xsparql:_sparql( fn:concat("PREFIX foaf: <http://

xmlns.com/foaf/0.1/>

8 PREFIX : <http://xsparql.deri.org/data/>

9 ", " SELECT ", "$ca $id", " ", "from", _xsparql:_rdf_term( _xsparql:
_binding_term( $graph ) ), " WHERE { ", " { ", "$ca", " ", " a ",

" ", ":ClosedAuction", " ; ", ":buyer", " ", "[", ":id", " $id ]",

" . ", " } ", " } ") )

10

11 (: XSPARQL FOR from 8:4 :)

12 let $_aux_results0 := _xsparql:_sparql( fn:concat("PREFIX foaf: <http://

xmlns.com/foaf/0.1/>

13 PREFIX : <http://xsparql.deri.org/data/>

14 ", " SELECT ", "$id ", "$name ", "from", _xsparql:_rdf_term( _xsparql:
_binding_term( $graph ) ), " WHERE { ", " { ", "$person", " ", " a "

, " ", "foaf:Person", " ; ", ":id", " ", "$id", " ; ", "foaf:name",

" ", "$name", " . ", " } ", " } ") )

15 for $_aux_result0 at $_aux_result0_pos in _xsparql:_sparqlResults(

$_aux_results0 )

16

17 (: SPARQL variable $id from 8:4 :)

18 let $id := _xsparql:_resultNode( $_aux_result0, "id" )

19

20 (: SPARQL variable $name from 8:8 :)

21 let $name := _xsparql:_resultNode( $_aux_result0, "name" )

22 return

23 <item person="{$name}">

24 {let $x :=

25 for $_aux_result4 at $_aux_result4_pos in _xsparql:_sparqlResults(

$_aux_results4 )

26 where $id = _xsparql:_resultNode( $_aux_result4, "id" )

27 return

28

29 (: SPARQL variable $ca from 0:0 :)
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30 let $ca := _xsparql:_resultNode( $_aux_result4, "ca" )

31

32 (: dependent variable $id :)

33 return

34 fn:data( $ca )

35 return

36 count( $x )}

37 </item>

Listing B.41: Xdep optimised query 8

1 import module namespace _xsparql = "http://xsparql.deri.org/demo/xquery/

xsparql.xquery" at "http://xsparql.deri.org/demo/xquery/xsparql-

types.xquery";

2 declare namespace _javaSaxon = "java:org.deri.sparql.Sparql";

3 (: declare default element namespace "http://xsparql.deri.org/data/"; :)

4 declare namespace foaf = "http://xmlns.com/foaf/0.1/";

5 declare variable $graph external;

6

7 let $_aux_results4 := _xsparql:_sparql( fn:concat("PREFIX foaf: <http

://xmlns.com/foaf/0.1/>

8 PREFIX : <http://xsparql.deri.org/data/>

9 ", " SELECT ", "$itemname $id", " ", "from", _xsparql:_rdf_term(
_xsparql:_binding_term( $graph ) ), " WHERE { ", " { ", "[]", " ",

":buyer", " ", "[", ":id", " $id ]", " ; ", " a ", " ", ":

ClosedAuction", " ; ", ":itemRef", " ", "[", ":locatedIn", " ", "[

", " a ", " ", ":Region", " ; ", ":name", " ", """europe""", "]",

" ; ", ":name", " ", "$itemname", "]", " . ", " } ", " } ") )

10

11

12 (: XSPARQL FOR from 21:4 :)

13 let $_aux_results0 := _xsparql:_sparql( fn:concat("PREFIX foaf: <http://

xmlns.com/foaf/0.1/>

14 PREFIX : <http://xsparql.deri.org/data/>

15 ", " SELECT ", "$id ", "$name ", "from", _xsparql:_rdf_term( _xsparql:
_binding_term( $graph ) ), " WHERE { ", " { ", "[]", " ", " a ", " "

, "foaf:Person", " ; ", "foaf:name", " ", "$name", " ; ", ":id", " "

, "$id", " . ", " } ", " } ") )

16 for $_aux_result0 at $_aux_result0_pos in _xsparql:_sparqlResults(

$_aux_results0 )

17

18 (: SPARQL variable $id from 21:4 :)

19 let $id := _xsparql:_resultNode( $_aux_result0, "id" )

20

21 (: SPARQL variable $name from 21:8 :)

22 let $name := _xsparql:_resultNode( $_aux_result0, "name" )

23 return

24 <person name="{$name}">
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25 {

26 for $_aux_result4 at $_aux_result4_pos in _xsparql:_sparqlResults(

$_aux_results4 )

27 where $id = _xsparql:_resultNode( $_aux_result4, "id" )

28 return

29

30 (: SPARQL variable $itemname from 0:0 :)

31 let $itemname := _xsparql:_resultNode( $_aux_result4, "itemname" )

32

33 (: dependent variable $id :)

34 return

35 <item>{fn:data( $itemname )}</item>}

36 </person>

Listing B.42: Xdep optimised query 9

1 import module namespace _xsparql = "http://xsparql.deri.org/demo/xquery/

xsparql.xquery" at "http://xsparql.deri.org/demo/xquery/xsparql-

types.xquery";

2 declare namespace _javaSaxon = "java:org.deri.sparql.Sparql";

3 (: declare default element namespace "http://xsparql.deri.org/data/"; :)

4 declare namespace foaf = "http://xmlns.com/foaf/0.1/";

5 declare variable $graph external;

6

7 let $_aux_results4 := _xsparql:_sparql( fn:concat("PREFIX foaf: <http

://xmlns.com/foaf/0.1/>

8 PREFIX : <http://xsparql.deri.org/data/>

9 ", " SELECT ", "$name ", "$income ", "$gender ", "$email ", " ", "

$homepage ", "$age ", "$person ", "$profile ", "$education $catid

", "from", _xsparql:_rdf_term( _xsparql:_binding_term( $graph ) ),

" WHERE { ", " { ", "$profile", " ", " a ", " ", ":

PersonalProfile", " ; ", ":ofPerson", " ", "$person", " ; ", ":

interest", " ", "[", " a ", " ", ":Category", " ; ", ":id", "

$catid ]", " . ", " optional ", " { ", "$profile", " ", ":gender",

" ", "$gender", " . ", " } ", " optional ", " { ", "$profile", "

", ":age", " ", "$age", " . ", " } ", " optional ", " { ", "

$profile", " ", ":education", " ", "$education", " . ", " } ", "

optional ", " { ", "$profile", " ", ":income", " ", "$income", " .

", " } ", " optional ", " { ", "$person", " ", "foaf:name", " ",

"$name", " . ", " } ", " optional ", " { ", "$person", " ", "foaf:

mbox", " ", "$email", " . ", " } ", " optional ", " { ", "$person"

, " ", "foaf:homepage", " ", "$homepage", " . ", " } ", " } ", " }

") )

10

11 (: XSPARQL FOR from 8:4 :)

12 let $_aux_results0 := _xsparql:_sparql( fn:concat("PREFIX foaf: <http://

xmlns.com/foaf/0.1/>

13 PREFIX : <http://xsparql.deri.org/data/>
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14 ", " SELECT ", " DISTINCT ", "$catid ", "from", _xsparql:_rdf_term(
_xsparql:_binding_term( $graph ) ), " WHERE { ", " { ", "$category",

" ", " a ", " ", ":Category", " ; ", ":id", " ", "$catid", " . ", "

} ", " } ") )

15 for $_aux_result0 at $_aux_result0_pos in _xsparql:_sparqlResults(

$_aux_results0 )

16

17 (: SPARQL variable $catid from 8:13 :)

18 let $catid := _xsparql:_resultNode( $_aux_result0, "catid" )

19 return

20 <categorie><id>{fn:data( $catid )}</id>

21 {

22 (: XSPARQL FOR from 0:0 :)

23 for $_aux_result4 at $_aux_result4_pos in _xsparql:_sparqlResults(

$_aux_results4 )

24 where $catid = _xsparql:_resultNode( $_aux_result4, "catid" )

25 return

26

27 (: SPARQL variable $name from 0:0 :)

28 let $name := _xsparql:_resultNode( $_aux_result4, "name" )

29

30 (: SPARQL variable $income from 0:0 :)

31 let $income := _xsparql:_resultNode( $_aux_result4, "income" )

32

33 (: SPARQL variable $gender from 0:0 :)

34 let $gender := _xsparql:_resultNode( $_aux_result4, "gender" )

35

36 (: SPARQL variable $email from 0:0 :)

37 let $email := _xsparql:_resultNode( $_aux_result4, "email" )

38

39 (: dependent variable $catid :)

40

41 (: SPARQL variable $homepage from 0:0 :)

42 let $homepage := _xsparql:_resultNode( $_aux_result4, "homepage" )

43

44 (: SPARQL variable $age from 0:0 :)

45 let $age := _xsparql:_resultNode( $_aux_result4, "age" )

46

47 (: SPARQL variable $person from 0:0 :)

48 let $person := _xsparql:_resultNode( $_aux_result4, "person" )

49

50 (: SPARQL variable $profile from 0:0 :)

51 let $profile := _xsparql:_resultNode( $_aux_result4, "profile" )

52

53 (: SPARQL variable $education from 0:0 :)

54 let $education := _xsparql:_resultNode( $_aux_result4, "education" )

55 return
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56 <personne>

57 <statistiques>

58 <sexe>{fn:data( $gender )}</sexe>

59 <age>{fn:data( $age )}</age>

60 <education>{fn:data( $education )}</education>

61 <revenu>{fn:data( $income )}</revenu>

62 </statistiques>

63 <coordonnees>

64 <nom></nom>

65 <rue></rue>

66 <ville></ville>

67 <pays></pays>

68 <reseau>

69 <courrier>{fn:data( $email )}</courrier>

70 <pagePerso>{fn:data( $homepage )}</pagePerso>

71 </reseau>

72 </coordonnees>

73 <cartePaiement></cartePaiement>

74 </personne>}

75 </categorie>

Listing B.43: Xdep optimised query 10
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Appendix C

Benchmark Results

This appendix presents the results of the evaluation of Chapter 6. We show
the mean query evaluation times of the three experiments of Chapter 6
in seconds rounded to one decimal. Whenever there is no result given
(experiment #2, queries #8–#12, for datasets #4 and #5) the query evaluation
time exceeded the timeout value of our test framework, which was fixed to
10 hours, i. e., 36 000 seconds.

Table C.1 shows the query evaluation times for the first experiment, that
is the evaluation of the 20 XMark XQuery queries.

Table C.2 shows the query evaluation times for the second experiment,
that is the evaluation of the standard XSPARQL rewriting of the 20 translated
XSPARQL queries.

Table C.3 contains the benchmark results of the Xdep optimised XSPARQL
queries. Since only three of the available 20 queries are compatible with Xdep

(queries #8–#10) we provide query evaluation results for these queries only.



C. Benchmark Results

Query # Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

1 1.8 2.0 2.4 4.6 7.9
2 1.7 2.0 2.4 4.6 8.0
3 1.9 2.1 2.6 4.8 8.1
4 1.8 2.1 2.6 4.8 8.2
5 1.7 1.9 2.4 4.6 7.8
6 1.8 2.0 2.3 4.5 7.7
7 1.8 2.0 2.4 4.6 7.9
8 2.0 2.2 2.8 5.1 9.2
9 2.0 2.3 2.9 5.8 9.8

10 2.5 3.2 3.9 6.4 11.1
11 2.7 4.1 11.0 54.5 198.2
12 2.5 3.2 6.1 22.7 75.0
13 1.8 2.0 2.5 4.7 8.0
14 1.8 2.0 2.5 4.8 8.5
15 1.7 2.0 2.4 4.5 7.7
16 1.8 2.0 2.4 4.5 7.7
17 1.8 2.1 2.5 4.7 8.1
18 1.8 2.1 2.5 4.7 8.3
19 2.0 2.4 3.0 5.6 9.2
20 1.8 2.1 2.6 4.9 8.5

Table C.1: Benchmark results of experiment #1
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Query # Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

1 2.6 3.6 7.7 16.8 42.4
2 11.9 45.2 175.6 1 043.5 3 651.2
3 12.1 45.5 179.9 1 022.9 3 679.7
4 2.6 3.6 6.7 18.6 40.7
5 2.3 3.5 6.2 16.5 34.1
6 2.9 4.6 8.1 21.1 37.6
7 4.1 6.2 9.7 22.2 42.5
8 1 478.7 6 225.3 25 904.6 — —
9 1 459.3 6 133.2 25 659.0 — —

10 85.0 336.1 1 455.2 — —
11 641.5 2 527.1 10 892.0 — —
12 314.5 1 161.9 4 895.3 — —
13 2.6 4.1 7.1 20.2 36.4
14 2.4 3.8 6.5 16.5 34.6
15 2.9 4.5 8.2 20.9 40.4
16 2.9 4.8 8.6 21.7 39.7
17 2.7 4.4 7.8 18.8 36.3
18 2.6 4.0 7.0 17.6 36.6
19 3.5 5.8 9.6 21.6 39.5
20 6.3 11.7 23.6 64.1 141.4

Table C.2: Benchmark results of experiment #2

Query # Dataset #1 Dataset #2 Dataset #3 Dataset #4 Dataset #5

8 20.2 55.5 189.1 1 114.4 4 501.8
9 12.3 26.7 74.2 383.3 1 433.8

10 36.2 107.7 400.4 2 330.9 9 414.9

Table C.3: Benchmark results of experiment #3
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Appendix D

Semantic Properties

In this appendix we will give several propositions and corresponding proofs
or proof sketches describing semantic properties of XSPARQL++ as well as the
correspondence of the semantics of the Xdep optimisation with the original
XSPARQL++ semantics.

D.1 Semantic Properties of XSPARQL++

XSPARQL subsumes XQuery syntax by extending XQuery with SPARQL gram-
mar productions. The semantics of XSPARQL is defined on top of XQuery by
the introduction of new normalisation rules as well as rules for static typing
and dynamic evaluation. But evaluating the SparqlForClause still relies on the
SPARQL semantics. Since only these new rules where introduced, semantics
is unchanged for standard XQuery queries.

Proposition D.1. Let XQ be an XQuery query, then the evaluation result of XQ un-
der XQuery semantics is equivalent to the evaluation result of XQ under XSPARQL++
semantics.

Proof (Sketch). XSPARQL semantics is defined on top of XQuery semantics. The
rules introduced for XSPARQL fall in one of two classes: (1) Rules handling
constructs not contained in XQuery (such as SparqlForClause or ConstructClause)
(2) Rules redefining XQuery syntax.

First case: Queries containing non-XQuery syntax are out of the scope of
the XQuery semantics and are therefore irrelevant for this proof.

Second Case: The only rules falling in this class are the normalisation
rules for FLWOR expressions, more specifically ForClauses and LetClauses.
The normalisation rules LetClauses are copied from original XQuery (see
Rule 2.25). After splitting ForClauses to SimpleForClauses, exactly as original
XQuery, the ones without positional variables are always decorated with



D. Semantic Properties

positional variables (see Rule 2.24). Therefore this rule ensures that every
ForClause contains a positional variable. But since the new positional variable
name contains an underscore as first character it is ensured that it is indeed
free. Because it is free, original semantics is not changed.

Corollary D.1. XSPARQL++ is a conservative extension of XQuery.

Proof. From Proposition D.1 we know that any XQuery query is also a valid
XSPARQL query. Therefore XSPARQL++ is an extension of XQuery conserving
semantics.

The proof to show that XSPARQL++ is a conservative extension of SPARQL
is very similar to the one given in [Akhtar et al., 2007].

Proposition D.2. Let SQ = ($x1, . . . , $xn, DS, P, M) be a SPARQL query of the
form select $x1 · · · $xn DWM, where DS denotes the RDF dataset corresponding
to the DatasetClause D, G the default graph of DS, P the graph pattern of the
WhereClause W, and M the solution modifiers. If eval(DS(G), SQ) = Ω1 and

dynEnv ` for $x1 · · · $xn from D(G) where {P}M return ($x1, . . . , $xn)⇒ Ω2.

Then, Ω1 ≡ Ω2 modulo representation1.

Proof (Sketch). In Rule 3.6 the SparqlForClause of an XSPARQL query is eval-
uated by the function fs:sparql. Since all the variables in P are free (since
the query is not nested and no XSPARQL prolog is given, there exists no
possibility for a variable to be bound) they are not replaced. The function
fs:sparql, by definition, evaluates a SPARQL query given as a list of variables,
a GroupGraphPattern and the SolutionModifier, while the dataset of the query
is retrieved from the activeDataset environment component. Therefore, and
because the ReturnClause extracts Ω2, the result is only a representational
variant of Ω1.

Corollary D.2. Let SQ be a SPARQL construct query, then the evaluation result
of SQ under SPARQL semantics is equivalent to the evaluation result of SQ under
XSPARQL++ semantics.

Proof (Sketch). A construct queries is rewritten to a SparqlForClause with a
ConstructClause as ReturnClause. Equivalent evaluation of the SparqlForClause
is shown in the proof of Proposition D.2. And since XSPARQL’s Construct-
Clause semantics reproduce the SPARQL semantics exactly in this regard,
construct queries are evaluated equivalently to SPARQL semantics.

1meaning that Ω1 as well as Ω2 represent the same sequence of (partial) variable bindings
while ordering may be relevant

174



D.2. Correspondence between XSPARQL++ and XDEP

Corollary D.3. The XSPARQL++ semantics is a conservative extension of the se-
mantics of the SPARQL SelectQuery and the SPARQL ConstructQuery.

Proof. Since Proposition D.2 and Corollary D.2 show that a SPARQL select

query and a SPARQL construct query is evaluated equivalently under both,
the XSPARQL and the SPARQL semantics, it is obvious that XSPARQL++ ex-
tends SPARQL while conserving semantics.

D.2 Correspondence between XSPARQL++ and XDEP

Since Xdep is defined in two different variants, the proof is split in two parts,
each handling one of the variants.

Proposition D.3. Given an XSPARQL query XSQFS containing a SparqlFor-
Clause embedded in the ReturnClause of a ForClause, then, JXSQFSKExprXDEP =

JXSQFSKExpr′ .

Proof (Sketch). The rewriting for the outer ForClause and for the inner Return-
Clause is the same for XSPARQL++ and for Xdep.

The first difference (step 1) between XSPARQL++ and Xdep is the inner
SparqlForClause being evaluated before the outer ForClause. Since the result of
this SparqlForClause is assigned to a new, i. e., previously unbound, variable,
no existing environment component relevant is changed in a way that would
influence the evaluation result. Therefore this change retains semantics.

The second difference (step 2) is the dependent join implementation.
Instead of replacing the dependent variable in the SparqlForClause with its
value, SPARQL solution mappings are gathered by joining the dependent
variable with the solution mappings stored in the variable of the first step.
Since the join compares the string value of the dependent variable and
additionally considers blank nodes, the same solution mappings are gathered.
Eventually the values of the non-dependent variables are assigned to XQuery
variables.

Since this results in the same environment components for the Return-
Clause, the semantics of XSPARQL++ is retained.

Proposition D.4. Given an XSPARQL query XSQSS containing a SparqlForClause
embedded in the ReturnClause of another SparqlForClause, then,
JXSQSSKExprXDEP = JXSQSSKExpr′ .

Proof (Sketch). The rewriting for the outer SparqlForClause and the inner Re-
turnClause is the same for XSPARQL++ and for Xdep.

Since the results of the inner SparqlForClause are assigned to a new, i. e.,
previously unbound, variable, no existing environment is changed in a way
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that would influence the evaluation result. Therefore this change retains
semantics.

Proposition D.3 shows that the environment components are the same
under XSPARQL++ semantics and Xdep when using a single dependent
variable. In case of an outer SparqlForClause there can exist more than one
dependent variables. Since the fs:join function selects only solution mappings
for which all the dependent variables are the same (the same in this context
includes the case where the dependent variable was bound to a blank node
in the outer SparqlForClause), the XQuery environment components are again
the same.

Proposition D.5. Given an XSPARQL query XSQ then,
JXSQKExprXDEP = JXSQKExpr′ .

Proof. Since the semantics of XSPARQL++ is retained by Xdep in the two
subcases, the XQuery ForClause (see Proposition D.3) and the SparqlForClause
(see Proposition D.4), and because these are the only cases for which Xdep is
defined, Xdep alone retains the XSPARQL++ semantics.
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