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Zusammenfassung

Offen verfiigbare Daten, die basierend auf Semantic Web Standards und Lin-
ked Data Prizipien in einem einheitlichen Format am Web veroffentlicht wer-
den, stellen eine hochwertige Quelle zur Datenanalyse dar. Obwohl die Inte-
gration von Daten der Hauptanwendungsfall von Semantic Web Technologi-
en ist, ist eine solche Intgration in der Praxis nicht trivial, da trotz einheitli-
cher Syntax aber wegen unvollstindiger Daten eine semantische Heterogeni-
tat iberwiegt. Als praktischen Anwendungsfall vergleichen wir in dieser Dis-
sertation statistische Stiadtedaten, die bereits offentlich im Word Wide Web
in (semi-) strukturierter Form als Linked Data zur Verfiigung stehen. Dazu
evaluieren wir verschiedene Datenquellen und integrieren passende Daten-
satze durch den Einsatz von Semantic Web Technologien. Zuerst befassen
wir uns in dieser Arbeit speziell mit der Herausforderung vollstandige und
vergleichbare Daten aus offenen RDF Datenbanken zu extrahieren, besonders
im Hinblick auf owL Entailment Regimes. Wir kommen zu dem Schluss, dass
owL Inferenz alleine keine ausreichende Losung fiir unvollstandige Daten
und Heterogenitétsprobleme ist. Als Ansatz um diese Probleme insbesondere
fur numerische Daten zu ldsen, entwickeln wir Methoden um fehlende Da-
ten abzuschitzen, basierend auf bekannten statistischen Methoden sowie auf
der deklarativen Reprasentation von numerischen Beziehungen in Form von
algebraischen Gleichungen. Schlussendlich diskutieren wir Kombinationen
dieser Methoden und entwickeln einen kombinierten Ansatz zur Verkniip-
fung regelbasierter und statisischer Methoden zur Anreicherung von Linked
Data.






Abstract

Data published in accordance with Semantic Web standards and Linked Data
principles constitutes a prime source of openly available data ready for ana-
lysis in a unified format. Even though the main use case of Semantic Web
technologies is data integration, in practice getting comparable data is not
trivial, that is heterogeneity problems and challenges arising through incom-
plete data prevail despite syntactic homogeneity. The use case we focus on in
this thesis revolves around comparing statistical data about cities found on
the Web in (semi-) structured form integrated as Linked Data. Firstly, we eval-
uate different data sources and eventually integrate suitable datasets using
Semantic Web technologies and rRDF. Hereby, the work specifically addresses
the challenges of getting complete data from sPARQL endpoints, for instance
with respect to owL entailment regimes. However, we come to the conclusion
that owL inference alone is insufficient for resolving incompleteness and het-
erogeneity problems, especially for numerical data. To this end, we develop
methods to infer missing numerical data exploiting statistical methods and
equational knowledge. Lastly, we discuss combinations of these methods, i.e.
we develop a combined approach for integrating rule-based and statistical

methods for Linked data enrichment.
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PART I

FOUNDATION






Introduction

The futurist Naisbitt wrote in 1982, “we are drowning in information, but
we are starved for knowledge” [Naisbitt 1982]. With the advent of the World
Wide Web (www) [Berners-Lee 1989], the amount of information in the form
of hypertext documents is even more vast and is continuously increasing.

To gain knowledge from an ocean of data we can perform data analysis.
Regardless of the concrete process a data analyst or data scientist follows—for
example Han [2012], Pyle [1999] and Schutt and O’Neil [2013]—one of the first
necessary and most time intensive tasks of data analysis is data preparation,
which includes data cleaning and data integration. Experts agree that around
60% of the time in data analysis is spent on data preparation alone [Cabena
et al. 1998; CloudFlower 2016; Pyle 1999]. Therefore efficient data preparation
approaches are crucial.

Search engines were built to automatically structure and find knowledge
in this information ocean. But the search engines could not understand the
contents of the documents they were linking to. This web of documents was
then augmented and extended with the web of data; a process ignited by the
seminal idea of the Semantic Web [Berners-Lee, J. Hendler and Lassila 2001].
The Semantic Web aims to provide a framework of languages and methods
to build “a new form of Web content that is meaningful (emphasis added) to
computers” [Berners-Lee, J. Hendler and Lassila 2001] and thus eventually
allowing machines to automatically produce and ingest information [Heath
and Bizer 2011; Berners-Lee 2006; Bernstein, J. Hendler and N. Noy 2016].
Nevertheless, the web of data only contributes to the explosion of the amount
of information and does not save us from drowning.

Semantic Web technologies aim to provide means to perform data integra-
tion and preparation more efficiently and—eventually—in an automated fash-
ion [Janowicz et al. 2015]. In practice, however, even getting comparable data
is not trivial; that is different kinds of heterogeneity problems and challenges
arise [Bernstein, J. Hendler and N. Noy 2016]. Converting data to Semantic
Web data formats alone does therefore not resolve heterogeneity, and actual
meaningful interlinking can only be partially automated and still involves
manual intervention. Even though data published following Semantic Web
principles constitutes a prime source of openly available data in a unified
format, this data still needs preprocessing before being ready for data ana-
lysis.
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In this work we focus on automatic taxonomic and numerical reasoning
to get more complete query answers necessary for data analysis.

THE ORIGINAL MOTIVATION of this thesis is the collection, integration and
analysis of openly available statistical data of cities worldwide, from a prac-
tical use case within Siemens, with the goal to score and compare cities based
on this data. City data is an interesting domain because of the societal and
economical implications of more and more people living and working in cit-
ies: since 2014 more than 50% of the population lives in cities—this ratio is
still increasing [United Nations 2015b]. The United Nations (UN) defined in
their 2030 Agenda for Sustainable Development [United Nations 2015a] one
goal specific to cities “Sustainable Development Goal 11: Make cities and hu-
man settlements inclusive, safe, resilient and sustainable”. When evaluating
progress on this goal the UN also uses statistical city data. Different organisa-
tions also acknowledge the importance of cities and city data by publishing
analyses of cities such as the Mercer’s Quality of Living Ranking [Mercer
2017], the Economist Intelligence Unit’s Global Liveability Ranking[The Eco-
nomist Intelligence Unit 2017] or the Siemens Green City Index [The Econom-
ist Intelligence Unit 2012]. These reports are used by city administration for
decision support or for example for companies to aid in computing premium
allowances for expatriate employees.

However, these existing reports have several disadvantages: (i) the under-
lying data is often already outdated when the analysis is published, (ii) the
underlying data is not publicly available, making an evaluation of validity
or reliability of the results hardly possible; additionally the computation of
the resulting scores and rankings is often not documented well enough to
reproduce the results (iii) the underlying data and the resulting scores and
rankings are often not reusable, either because of technical or legal reasons.

OUuUR HYPOTHESIS in this thesis is that in fact a lot of the underlying data used
to generate these reports is already available in one or the other form publicly
as open data and that—by exploiting Semantic Web technologies—we can col-
lect and integrate this data to eventually enable the up-to-date generation of
such reports in an automated fashion while retaining data lineage.

1.1 Challenges and Research Questions

Data integration is an important part of data preparation and it is the main use
case for Semantic Web technologies. While integration is not always simple
to achieve, Semantic Web technologies provide different tools to address it.
Apart from data integration other steps of data preparation, e.g. data clean-
ing, data reduction, data transformation [Han 2012], are hard to achieve with
existing Semantic Web technologies alone. In particular the manipulation of
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numbers can be cumbersome and is thus often left to dedicated data analysis
tool which are not integrated into Linked Data based workflows. Therefore
information about the data origin and processing is lost in the process. Reas-
oning about and processing of taxonomic knowledge is well addressed within
Semantic Web research, reasoning about and processing numerical data is—
with few exceptions—still a widely neglected area.

When building a Semantic Web analysis platform several problems arise,
which cannot be solved efficiently by engineering but pose interesting re-
search problems. In this work we are concerned with three of such challenges.

Reasoning Capabilities of SPARQL Endpoints Unknown

Linked Data and other rDF data is often accessible via open sPARQL endpoints
where data is modelled after owL ontologies. However, these endpoints often
do not or only partially support ontological reasoning (for example on certain
fragments of owL such as RDFs only) or it is unclear whether or to which
extent reasoning already was applied to the data. Thus, we need means to
assess if reasoning is performed. If not, we still want to be able to do reasoning
with the tools sPARQL provides.

In the case of owL QL ontologies which we are considering in this thesis,
a user can still get complete query answers by using ontology mediated query
answering (OMQA) techniques [Bienvenu and Ortiz 2015]. In omQa the query
is first rewritten into a new query, by taking the ontology into account. For
our main use case however, oMQA has two disadvantages: (i) RDF triple stores
do not distinguish between terminological and assertional knowledge like
Description Logic and omQa, thus the ontology must be extracted beforehand
for the rewriting step (ii) the rewritten query is exponentially large in the size
of the input query in the worst case [Calvanese, De Giacomo et al. 2007].

Research question 1. Can we produce and effectively use rewritings of SPARQL
queries which are independent of the ontology and avoid the exponential blowup
of standard query rewriting techniques?

We aim to push the boundaries of enabling owL QL on off-the-shelf sPaArRQL
endpoints by query rewriting and without knowing the ontology upfront.

Equational Background Knowledge Unusable for Reasoning

Even if ontological reasoning is complete, certain “ontological” background
knowledge, such as equations on numeric values, are out of scope of ontolo-
gical reasoners.

Data analysts working with statistical data (or other numeric data in gen-
eral) are interested in computing indicators to represent some characteristic.
For example the number of unemployed persons is an important indicator
when evaluating the economic situation of a region. But only when normal-



INTRODUCTION

ising this indicator to the population number (usually including only persons
of employable age) of the region and thus computing the unemployment rate
regions then become comparable.

These computations are usually defined as functions or equations. Equa-
tions describe relations between numerical attributes. While owL provides
terminological reasoning services, knowledge about attributes (concrete val-
ues like numbers or strings) is only weakly supported. Equations are not ex-
pressible by owL 2 alone. Extending owL to express equations and a corres-
ponding semantics for computation would give us the means to compute new
values like the GDP per capita or check numerical attributes for consistency.

Research question 2. Can we express and effectively use equational knowledge
about numerical values of instances along with RDFs and OWL to derive new
values?

By using equational knowledge we can transparently compute new numer-
ical values for missing value prediction, for computing derived indicators or
simply for converting values between units.

Ontological Reasoning Insufficient for Predicting Missing Values

Real-world datasets are often missing a part of the data which would be
needed for data analysis, e.g. to be able to compute indicators and scores for
all desired cities. Ontological reasoning alone is insufficient to impute miss-
ing values for analysis because it lacks significant reasoning capabilities for
numeric values. Automatic computation of new values based on equational
knowledge alone will often still not give enough data to conduct an analysis.
Standard statistical missing data methods are also challenged by the high
rate of missing values in such datasets. A combination of equationally de-
rived values and statistical methods could improve the overall missing value
estimation quality.

Research question 3. Can we combine statistical inference with owL and equa-
tional knowledge to improve missing value imputation?

With this combined workflow we expect higher quality missing value pre-
dictions as well as a higher number of missing value predictions. Ideally we
could combine all three methods, namely statistical missing-value imputa-
tion, equational knowledge and ontological reasoning. As we discuss in Chap-
ter 8, an effective approach to this ideal combination is non-trivial to find.

OVERALL WE ARE interested to find out to what extent we can use standard
off-the-shelf tools such as SPARQL engines to answer the research questions.
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1.2 Contributions and Structure

We now introduce four contributions of this thesis to address the three re-
search questions.

1.2.1  Contribution to research question 1

Schema-agnostic rewriting We introduce schema-agnostic query rewriting
in SPARQL 1.1 as a way to transparently, i.e. independently of the ontology,
rewrite a SPARQL query into a new SPARQL query. The rewriting exploits
SPARQL 1.1 property path expressions to navigate the ontology at runtime
and thus turns an off-the-shelf sSPARQL 1.1 engine into an OWL QL reasoner.

We introduced schema-agnostic query rewriting in SPARQL 1.1 at the In-
ternational Semantic Web Conference 2014 [Bischof, Krotzsch et al. 2014a],
and also published a paper at the Description Logic Workshop 2015 [Bischof,
Krotzsch et al. 2015]. A journal submission containing an extensive evaluation
of schema-agnostic querying is currently in preparation [Bischof, Krétzsch
et al. 2017]. Schema-agnostic rewriting is presented in Chapter 3.

1.2.2  Contributions to research question 2

In general rDF allows two ways to model numerical data: (i) as a numeric
literal (attribute) in a binary relation in RDF—the equivalent in owL being
DataProperty (ii) as part of an n-ary (or reified) statement, as for example
modelled by the measure dimension in the Data Cube vocabulary [Cyganiak,
Reynolds and Tennison 2014]. The following two contributions describe ex-
pressing and reasoning with equational knowledge for these two cases.

RDF Attribute Equations We define an extension of the Description Logic
equivalent to RDFs to express relations between numerical attributes (equa-
tions) for RDF attributes. We give an algorithm for SPARQL query rewriting
to transparently compute new values for backward chaining reasoning,.

We presented RDF attribute equations at the Extended Semantic Web Con-
ference 2013 [Bischof and Polleres 2013]. These results are presented in Chap-
ter 4.

0B Equations We introduce QB equations, an approach to compute new nu-
merical (statistical) data by exploiting equational knowledge for multidimen-
sional databases. QB equations use the Data Cube vocabulary and provide de-
tailed provenance information on how values are computed and can propag-
ate error estimates of input values. Error estimates quantify how much re-
ported indicator values potentially deviate from the real value. Such error
estimates can stem from observed values or from statistical missing value
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1 http://citydata.wu.ac.at/ocdp

2 http://citydata.wu.ac.at/ocdp/

imputation algorithms. We give an RDF syntax and semantics and present
experimental results of a prototype implementation.

A journal submission containing the QB equations as well as an improved
version of the Open City Data Pipeline' is accepted for publication in the
Special Issue on Semantic Statistics of the Journal of Web Semantics [Bischof,
Harth et al. 2017]. @B equations are described in Chapter 6.

1.2.3 Contribution to research question 3

Combined missing value prediction We introduce a process to fill in miss-
ing values which usually occur in Linked Data, especially when integrating
data in one domain from different sources. The described process combines
statistical missing value imputation applied on data given in the Data Cube
vocabulary with QB equations.

We introduced the Open City Data Pipeline and specifically the first part
of the combined missing value prediction—two machine learning methods
for missing value prediction—at the Know@trop workshop [Bischof, Martin
et al. 2015b] co-located with Eswc 2015. We presented an extension of the
above paper on the Open City Data Pipeline at the International Semantic
Web Conference 2015 [Bischof, Martin et al. 2015a], where we additionally
evaluated the cross-dataset-predictions and automatic learning of indicator
mappings between datasets. A journal submission containing the 9B equa-
tions as well as an improved version of the Open City Data Pipeline is accep-
ted for publication in the Special Issue on Semantic Statistics of the Journal of
Web Semantics [Bischof, Harth et al. 2017] and served as a basis for Chapter 7.

ApART FROM the research questions, our use case motivates the four previous
technical contributions with a concrete application scenario. The Open City
Data Pipeline is a platform to collect, integrate, enrich and republish Linked
Data about cities based on off-the-shelf Semantic Web technologies.?

1.2.4 Outline

The current Part I Foundations contains this introduction chapter as well as
the Preliminaries.

Chapter 2 explains shared definitions used in the following chapters. This
mainly includes Semantic Web foundations, including description logics
and Semantic Web technologies.

Part II Theory contains the two theoretical foundational building blocks ne-
cessary later, addressing research questions 1 and 2.

Chapter 3 introduces schema-agnostic rewriting. We give formal definitions
and an extensive evaluation.
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Chapter 4 introduces RDF attribute equations. We extend a common descrip-
tion logic to support reasoning with equational knowledge and give an
experimental evaluation.

Part IIT Application describes our main use case and its implementation in
the Open City Data Pipeline. Furthermore this part describes two research
contributions addressing research questions 2 and 3.

Chapter 5 describes our main use case in more detail. The chapter explains
the architecture of the Open City Data Pipeline and how the data needed
for the following chapter is modelled.

Chapter 6 describes QB equations, which express equational knowledge for
the Data Cube vocabulary. We introduce an RDF syntax, a semantics based
on the evaluation of SPARQL queries until a fixpoint is reached.

Chapter 7 we present a combined workflow integrating statistical machine
learning methods with reasoning based on equational knowledge. In a prac-
tical evaluation we show how the combined method can help in building a
system to process data for analysis and further publication in the domain
of city data.

In Part IV Conclusion we summarise and conclude this work.

Chapter 8 summarises this work and evaluate the presented contributions
with respect to the research questions. We finish with a list of open ques-

tions interesting for future work.

In Part V Appendices we give technical details of RDF serialization, specific
parts of the Open City Data Pipeline implementation as well as a complete

example of the 9B equation implementation.






Preliminaries

This chapter provides the preliminaries needed for the following chapters.
In particular this chapter includes an introduction to basic Semantic Web
technology specifications such as w3c standards as well as their formal un-
derpinnings. We keep this chapter to the necessary minimum and refer the
interested reader to more extensive resources at the end of each section.

Section 2.1 introduces the underlying Semantic Web data model rRDF and
Section 2.2 describes the corresponding query language SPARQL. OWL 2, a
knowledge representation language along with reasoning formalisms applic-
able to owL are described in Section 2.3. Section 2.4 describes relevant Linked
Data Vocabularies.

2.1 Resource Description Framework

The Resource Description Framework (rRDF) specifies the foundational data
model of Semantic Web Technologies. RDF is primarily the definition of a
graph-based data model, to describe any kind of things (called resources). In
RDF we distinguish three types of such resources: 1r1s, blank nodes and lit-
erals. Internationalized Resource Identifiers (1R1) are used to name resources.
A resource could be any physical thing such as a rock or a person, or a im-
material thing such as a city or the concept of a smart city itself. If, for some
reason, it is unnecessary to give a resource an explicit name, a blank node
can be used; formally a blank node can be seen as an anonymous existential
variable. Lastly, a literal is a data value which can be of one of several types:
a simple string, e.g. "Vienna", a string with a language tag, e.g. "Wien"@de,
where de represents the German language or literals with a datatype, e.g.
"1741246" M xsd:int, where xsd:int represents integer numbers [Klyne, Carroll
and McBride 2014].

The basic building block of the rRDF data model is an RDF triple (or simply
triple) consisting of a subject, predicate and object, where subject and object
are often depicted as nodes and the predicate as the label of the directed link
connecting the subject to the object. Each of the three can be an 1Rr1. Subject
and object can also be a blank node, i.e. an unlabelled entity. The object can
also consist of a literal, i.e. an atomic value in a simple datatype such as string
or integer.
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1 Apart from this initial
description we will usually also use
the term Irr instead of CURIE.

2 http://dbpedia.org/
3 http://xmlns.com/foaf/0.1/

Definition 2.1 (RDF term, RDF triple, RDF graph). Let I be the set of all 1Rris,
L be the set of all literals and B the set of all blank nodes where all these
three sets are pairwise disjoint. The set L is comprised of all literals with
language tags, literals with datatype 1Rr1s and plain literals, i.e., literals with
no language tag or datatype IRr1. Then the set of RDF terms T is the union of
these sets IU L U B. An rDF triple is a triple (s,p,0) € 1U B) X I X T where
s is the subject, p the predicate and o the object. A set of RDF triples is an RDF

graph.

The rDF specificatication originally specified only the RDF/XML syntax—an
XML based syntax for the RDF data model [Gandon and Schreiber 2014]. In
this work we will use the more compact and human-friendly Turtle syntax
instead to denote RDF triples and RDF graphs [Beckett et al. 2014]. Turtle
provides two syntaxes for an 1RI, either as IrI enclosed in a pair of angle
brackets <http://dbpedia.org/resource/Vienna> or as CURIE [Birbeck and Mc-
Carron 2010], a syntax for expressing compact 1r1s.! With a prefix declaration
such as @prefix dbr: <http://dbpedia.org/resource/> we can express the same IRI
as before as dbr:Vienna. Blank nodes can be expressed either as cURIE with
the underscore ’_’ as prefix or as a pair of square brackets. Literals are either
given as plain literals, as literals with language tag or as literals with datatype
annotation. RDF triples are then written by simply joining subject, predicate
and object with white space and terminated by a dot. To reduce redundancy
a semicolon can be used to implicitly repeat the subject and a comma to im-
plicitly both subject and predicate.

Example 2.1. Rounded rectangles depict nodes—more specifically cURIESs in
the following example—and rectangles literals. The following figure shows an
RDF graph with a subject node dbr:Vienna, which is connected to the object
node dbr:Austria via the predicate dbo:country. The other three triples show
three different forms of literals as objects. While "Vienna" is a plain literal,
"Wien"@de is a literal with a language tag for German and "1741246" A xsd:int
is a typed literal, an integer number in this case. We use 1R1s and triples from
the DBPEDIA RDF graph [Bizer et al. 2009]?, which includes foaf:name from
the friend of a friend ontology (FoAF).3

dbr:Vienna dbo:country- dbr:Austria

foaf:name

dbo:populationTotal
pop foaf:name
| "1741246"Mxsd:int | "Wien"@de

This graph can then be represented in Turtle RDF syntax as follows:

@prefix dbr: <http :// dbpedia.org/resource/>
@prefix dbo: <http :// dbpedia.org/ontology/>
@prefix foaf: <http://xmlns.com/foaf/0.1/>
dbr:Vienna a dbo:City .


http://dbpedia.org/
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dbr:Vienna dbo:country dbr: Austria .

dbr:Vienna foaf :name "Vienna" .

dbr:Vienna foaf :name "Wien"@de .

dbr:Vienna dbo:populationTotal "1741246"""xsd: integer .

Using semicolons and commas we can write the same RDF graph more com-
pactly as follows:
@prefix dbr: <http :// dbpedia.org/resource/>
@prefix dbo: <http :// dbpedia.org/ontology/>
@prefix foaf: <http:// xmlns.com/foaf/0.1/>
dbr:Vienna a dbo:City ;
dbo:country dbr: Austria ;
foaf :name "Vienna", "Wien"@de ;
dbo:populationTotal "1741246""xsd:integer . o

For a more compact representation we will use the prefix declarations from
Appendix A instead of listing them in every example.

Summary The RDF as a data model can represent arbitrary resources which
are named using IRIs, relations between resources also named using 1R1s plus
concrete atomic attribute values wich are represented by possibly typed lit-
erals. As syntax we use cURIEs and Turtle. The texbook by Hitzler, Krétzsch
and Rudolph [2009] contains a complete introduction to RDF.

2.2 SPARQL

Just as for relational data, we need tools to access and process data given
in RDF. Analogous to sQL for relational data, the query language for RDF is
SPARQL [Harris and Seaborne 2013].

2.21  SPARQL Syntax

The spARQL language builds upon basic graph patterns (8GP) as the founda-
tional patterns which map variables to RDF resources, as well as more com-
plex graph patterns built on top of BGPs.

A triple pattern is a simple extension of the rRDF triple by allowing a vari-
able in each position and a path expression as predicate.

Definition 2.2 (triple pattern, BGp). Let V be the set of variables, disjoint from
T. Then a triple pattern is a triple TUBU V) X (IUV) X (T UYV). A basic graph
pattern (BGP) is a set of triple patterns.

Path expressions work like regular expressions over edges in RDF graphs and
can be used in a SPARQL BGP on predicate position to form path patterns.

Definition 2.3 (path expression, path pattern). The set of path expressions E
is defined inductively as follows: (i) Every 1R1 is a path expression (ii) For e

2.2 SPARQL

13
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4 see Harris and Seaborne [2013]
for a complete list of SPARQL
functions, we restrict ourselves
here to the ones used in the course
of this thesis

5 the other result forms are not
relevant for this thesis [Harris and
Seaborne 2013]

and f being property expressions, the following expressions are property ex-
pressions as well: ("e) for inverse, (e / f) for sequence, (e | f) for alternative
and (e*) for Kleene star. As usual, parentheses can be omitted if there is no
danger of confusion. A path pattern is a triple (TU V) XE X (VUYV).

Additionally to triple patterns we also allow path patterns in BGPs.
More complex graph patterns allow value creation, filtering, conjunction,

disjunction and optional matching.

Definition 2.4 (graph pattern). The set of graph patterns is defined induct-
ively as follows:

= a BGP is a graph pattern

= if e is a SPARQL expression, p is a graph pattern and ?v is a variable not
occurring in p, then BIND(e AS ?v) is a graph pattern

= if e is a SPARQL expression and p is a graph pattern, then {p} FILTER(e) is a
graph pattern

= if p and g are graph patterns, then {p} UNION {q}, {p} OPTIONAL {g} and

{p} . {q} are graph patterns

SPARQL expressions can be used for filtering but also for value creation.

Definition 2.5 (SPARQL expression). SPARQL expressions are defined induct-
ively:

= avariable is a SPARQL expression

= an RDF term is a SPARQL expression

= if p is a graph pattern, then EXISTS{p} is a SPARQL expression

= if ey, ..., e, are SPARQL expressions and f is one of the sPARQL functions*
CONCAT, REPLACE, IRI, ABS, NOW, NOT or IF, then f(el, ...,€ey) 1S a SPARQL
expression

= if e; and e, are SPARQL expressions, then e; = ey, e; < €3, e; <= e, 1 != ey,
e; > e; and e; >= ey as well as e; & e; and e || e; are SPARQL expressions

SPARQL allows three result forms for querying RDF or one form for updating
RDF graphs.®

Definition 2.6 (SPARQL query, result form). A SPARQL query consists of a
triple (R, P, G) where P is a graph pattern, G is an RDF graph and R is a result
form defined as one of four cases as follows:

= SELECT ?v;...?%, is a result form for the variables vy, ..., v,
= CONSTRUCT {T} is a result form

= ASK is a result form

= INSERT {T} is a result form

where T is a set of triple patterns called graph template.

A template, as needed for CONSTRUCT and INSERT consists of a set of triple



patterns.

SPARQL defines a dataset which consists of one so called default graph
and a set of named graphs, where a named graph is a pair (i, G) where i € I
and G is an RDF graph. Since this practical feature is not necessary in this
thesis, we operate on a single graph G instead.

Example 2.2. The following query is a SELECT query containing one path
pattern

SELECT ?thing ?name
WHERE { ?thing dbo:country?/foaf:name ?name}

The next example is a CONSTRUCT query and contains two triple pat-
terns in a BGP, a BIND pattern for value creation and a triple pattern in the
CONSTRUCT template:

CONSTRUCT { ?thing dbo:populationDensity ?populationDensity }

WHERE { ?thing dbo:populationTotal ?population ;

dbo:areaTotal ?area .
BIND(?population/?area AS ?populationDensity) } 0

2.2.2  SPARQL Semantics

We define the semantics of sPARQL queries extending J. Pérez, Arenas and
Gutierrez [2009] with operators needed in the course of this work. Th neces-
sary extensions include the following SPARQL 1.1 features: path expressions,
value assignment, more SPARQL expressions as well as update queries. We
thus define a set semantics in contrast of the bag semantics of the SPARQL
specification. First we define the semantics of path expressions.

Definition 2.7. We define the evaluation of path expressions with respect to
an RDF graph G as a binary relation over IU B in an inductive way: for p € I,
[plc = {(u1,u2) | i p uz € G}, inverse ["plc = {(uz,w1) | (us,u2) € [plc}
sequence [p / qlc = {(u,u3) | (u,u2) € [p]G, (uz,u3) € [q]c}, alternative

[p14lc = [plc U lqlc. Kleene star [p*]c = Unxolp"lc where [p"]c =
{(u,u) | u € TUB occurs in G} and [p"*']s = [p"]: © [p]c-

Next we define the semantics of triple patterns and BGps. Blank nodes in
BGPs work like scoped variables and are instantiated via a mapping o. The
mapping p then is a partial mapping from variables to RDF terms.

Definition 2.8. The evaluation [b] s of a basic graph pattern b with respect to
an RDF graph G is the set of all partial mappings p from variables in b to 1R1s,
blank nodes or literals of G, such that there exists some mapping o from all
blank nodes in b to terms of G for which p(o(b)) € G. Two mappings p; and
Uy are compatible if for all ?7v € dom(y;) Ndom(y,) the mappings are the same
1(?v) = p2(?v). The domain dom(p) of a mapping p is the set of variables
where p is defined.

2.2 SPARQL
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6 Similarly to J. Pérez, Arenas and
Gutierrez [2009] we use a
two-valued logic here for sPARQL
expressions. However the
semantics would be easily
generalisable to add the third value
error to the official three-valued
logic, see Polleres and Wallner
[2013].

We can now define the evaluation of the other graph patterns over a graph.

Definition 2.9. The evaluation [p]¢ of a graph pattern p over an rRDF graph
G is defined recursively as follows:

* o1 pelle = {m Y p2 | i € [pr]l G5 12 € [p2]lG and py, p are compatible}

[p1 UNION po]lg = {p | pt € [pi]G or p € [p2]G}

[p1 OPTIONAL p]6 = [p1 - pollc U {p € [pi]lG for all p’ € [p2] G, p. p” are not
compatible }

[pFILTERe] 6 = {1 | 1 € [p] G and [u(e)]c = true}

[pBIND(e AS )]G = {pn U 2 | 1 € [PllG, 2 = {?v = [mle)]c}}

We say a graph pattern gp has a match into a graph G if [gp]c # 0.

We slightly abuse the notation by extending the mapping p to all sPARQL
expressions, so the mapping pi(e) maps a SPARQL expression e to a SPARQL
expression e’ where all variables are replaced according to .6

Definition 2.10. The evaluation [e] of a SPARQL expression e over an RDF
graph G is defined recursively as follows:

= foran roF term ¢ € T, [t]g = ¢
= for a graph pattern p, [EXISTS{p}]c = trueif [p]c # O and false otherwise
[CONCAT(ey, . . ., en)] returns the concatenation of [ei]g,...,[en]c to one

string

[REPLACE(s, p, r)] ¢ returns the string [s] where the string [r]¢ replaces
matches of the regular pattern p in s

[IRI(e)] converts the string [e]¢ into an IRI

[ABS(e)] returns the absolute value of a number [e] ¢

[NOW()] returns the current date and time
[NOT(e)]; returns true if [e] = false and false otherwise
[IF(c, i, e)] G returns [i] if [c¢]c = true and [e] otherwise

= for the comparison operators o € {=, <, <=, >, >=, =}, the evaluation [e; o
e2] ¢ returns the boolean value of the corresponding comparisons for num-
bers [ei]¢ and [ez] ¢

= [e1 && e2] G returns trueif [e;] ¢ = true and [e;] ¢ = true and false otherwise

= [e1 || e2] G returns true if [e;]G = true or [e;] g = true and false otherwise

Whenever the type of one of the subexpressions does not match the expected
type in the definition, the result is undefined.

Finally we define the answers of a complete SPARQL query.

Definition 2.11. The set of answers of a SELECT query (SELECT ?v;...?%v,, P,G)
is the set obtained by restricting every partial function p € [P]s to the vari-
ables ?vy, ... 7v,.

The set of answers of a CONSTRUCT query (CONSTRUCT T, P, G) returns
the RDF graph obtained by applying each mapping y in the evaluation [P]¢
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to each triple in the template T. For each blank node in T a fresh blank node
is created for each mapping y € [P]s.

The answer of an ASK query (ASK, P, G) returns true if [P]c # 0 and false
otherwise.

The INSERT query (INSERT T, P, G) replaces the RDF graph G with a new
RDF graph G’ which is the union of G and the rRDF graph obtained by applying
each mapping y in the evaluation [P] to each triple in the template T. As for
the CONSTRUCT query, for each blank node in T a fresh blank node is created
for each mapping y € [P]g.

Example 2.3. The first query of Example 2.2 returns the set of mappings (of-
ten visualised as a table) with ?thing being mapped to an 1r1 or blank node
representing a city, and ?name being mapped to the name of the city or the
country the city belongs to. For the example graph from Example 2.1 we will
get the following two results:

?thing ?name

dbr:Vienna "Vienna"
dbr:Vienna "Wien"@de

If the country dbr:Austria had a triple with the predicate foaf:name as well,
we would get an additional result.

For the second query of Example 2.2 and the RDF graph from Example 2.1
plus the triple dbr:Vienna dbo:areaTotal 414650000.0"**xsd:double, we would
get the following RDF graph as a result, giving us the population density of
Vienna per m?: dbr:Vienna dbo:populationDensity 0.004199. o

Summary SPARQL 1.1 is an expressive query language to process RDF data.
The textbook by DuCharme [2013] gives a good introduction to SPARQL 1.1.
While Hitzler, Krétzsch and Rudolph [2009] cover only the older sPARQL
specification [Prud’hommeaux and Seaborne 2008]. Kaminski, Kostylev and
Grau [2017] give a formal analysis of new SPARQL 1.1 features, in particular
assignment, subqueries and aggregation.

2.3 Semantic Web Reasoning

To increase the expressiveness of RDF the w3c also published the RDF Schema
(rDFS) [Brickley and Guha 2014] and the Web Ontology Language (owL) spe-
cifications [owL Working Group 2009]. In this thesis we refer only to the
most recent versions of these specifications, namely, RDFs 1.1 and oWL 2.
RDF allows resources to be assigned to classes by using rdf:type as predic-
ate in triples where the instance is at the subject position and the class is at
the object position. RDFs extends RDF by essentially four constructs, which
are rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range (cf. Gutierrez,
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7 See Baader, Calvanese et al.
[2007] and Baader, Horrocks et al.
[2017] for more examples.

Hurtado and Mendelzon [2004]). Where rdfs:subClassOf and rdfs:subProperty-
Of allow to create hierarchies of classes and properties, respectively, where
the subclass (subproperty) is the subject and the superclass (superproperty)
is the object. The properties rdfs:domain and rdfs:range relate a property p, in
the subject position of the axiom triple, to a class in the object position of the
axiom triple. Given a triple x p y, rdfs:domain specifies the class for x and
rdfs:range specifies the class for y.

OWL is a language to represent ontologies, which in turn are descriptions
about things (called resources), groups of resources and their relations [Hitz-
ler, Krotzsch et al. 2009]. The semantics of owL can either be given by the
RDF semantics or by a mapping to description logic. The definition we choose
is the latter one, called the direct semantics. The family of owL specifications
defines three different fragments of the owLr language called owr profiles
[Motik, Cuenca Grau et al. 2009] which allow tractable reasoning for differ-
ent reasoning tasks. In this thesis we restrict ourselves to the so-called owL QL
profile and its corresponding description logic DL-Lite, which are tailored to
allow tractable query answering.

This section first introduce description logics, which is the foundational
logic for the rRDFS and owL semantics definition. Afterwards we introduce
the different RDFs and owL constructs with their corresponding RDF syntax
and then define the semantics of RDFs and owL by translation to a suitable
description logic. Eventually we introduce ontological query answering as the

idea of answering queries in the presence of ontologies.

2.3.1 Description Logics and OWL

Description Logic (pr) (cf. Baader, Calvanese et al. [2007]) is a logic-based
knowledge representation formalism. Besides the Semantic Web, DLs are used
in several areas, for example for conceptual modelling (e.g. Calvanese, Len-
zerini and Nardi [1998]), information integration (e.g. N. F. Noy [2004]) or
ontological query answering (see below).?

As explained above we will only use one specific description logic in this
thesis: DL-Lite, originally denoted as pL-Liteg by [Calvanese, De Giacomo
et al. 2007] . We will now formally define pr-Lite and extend the notions of

class and property informally introduced by rRDFs above.

Definition 2.12. Let A be an atomic class name and P be an atomic property
name. B is a basic class and Q is a basic property. C is a complex class expres-
sion and R is a complex property expression. Then classes and properties are
defined as follows:

B:=A|30 Q:=P|P
C:=B|-B R:=0Q]|-0

Definition 2.13. A DL-Lite knowledge base (kB) K = (7, A) consists of a
TBox 7 and an ABox A. The TBox is a set of class inclusion axioms B C C



Table 2.1: Corresponding expressions of owr and DL syntax
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OWL RDF syntax DL syntax
owl:Thing T
owl:Nothing L
owl:someValuesFrom owl:Thing; owl:onProperty P dp
owl:someValuesFrom C ; owl:onProperty Q 30.C
B rdfs:subClassOf C B,EG,
B owl:equivalentClass B, Bi=B,
B; owl:disjointWith B, B, E-B,
P, owliinverseOf P, P =P;
Q rdfs:subPropertyOf R QCR
O owl:equivalentProperty Qs 01=0,
P rdfs:domain A JPCA
P rdfs:range A JdP"CA
Py owl:propertyDisjointWith P, P,E-P,
1 owl:complementOf O, 01=-0;
x rdf:type A A(x)
xRy R(x,y)
x owl:differentFrom y xX#y

and property inclusion axioms Q T R. The ABox is a set of class membership
axioms A(a) and property membership axioms P(a, b).

Definition 2.14. An interpretation I = (A%, -1) consists of a non-empty set
AT called the object domain and an interpretation function -* which is defined
as follows:
Al c A Class assertion
PT c AT x AT
39" = {x|3y.(x,y) e R"}
(P ={t.»)|(».x) e R} Inverse
(-B)" = AT\ B'
Q)" = AT x AT\ Qf

Property assertion

Existential restriction

Class negation

Property negation

An interpretation I satisfies an axiom «a, denoted 7 |= «, in the following
cases:

T EeccAifc? cat

IEPCPifPl cP/

I = C(a)ifa’ ec?

I [ P(a,b) if (a*,b7) e PT

Finally, an interpretation 7 is called a model of a kB K = (7, A), written
I |= K, if I satisfies all axioms in 7~ and A.

Table 2.1 shows the conversion from owL to the DL syntax where the equi-
valence axiom X = Y is used as a short hand for the two corresponding
inclusion axioms X C Y and Y C X. The mapping is based on the owL to

19



20

PRELIMINARIES

RDF mapping [Patel-Schneider and Motik 2009]. Additionally the owL RDF
syntax provides the following shorter notations to express sets of (more than

two) pairwise disjoint classes By, . . ., B,, properties Py, ..., P, and instances
|1, ceey |n1
x rdf:type owl:AllDisjointClasses; owl:members (By, ..., B;)
x rdf:type owl:AllDisjointProperties; owl:members (Py,...,P;)
x rdf:type owl:AllDifferent; owl:members (ly, ..., ;)

Qualified existential restriction B’ C 3R.B is only used as syntactic sugar
since it can also be written with a fresh property name Rp according to our
defined pL as follows:

B'C3dRg, JRzC B, RLCR

In the literature class disjointness is sometimes alternatively written as B N
B’ E 1, the same applies to property disjointness.

2.3.2  Ontological Query Answering

After introducing Description Logics and their usage in Semantic Web stand-
ards, we now turn towards query answering. The topic of answering quer-
ies in the presence of ontologies has received substantial attention from the
knowledge representation community, notably Calvanese, De Giacomo et al.
[2007], Poggi et al. [2008] and Artale et al. [2009] and to some extent from
the database community, e.g. Cali, Gottlob and Lukasiewicz [2012]. As Onto-
logical Query Answering we understand the idea of getting not only explicitly
stored data (so called extensional data) from a database, but also data which
can be indirectly entailed from the combination of extensional data with an
ontology (so called intensional data). In the literature the terms Ontology-
Mediated Query Answering (omQA) and Ontology-Based Data Access (0BDA)
refer to the same idea. Originally oBDA also included a step mapping the res-
ulting query to relational database queries. In this thesis we follow recent de-
velopments and use the terms 0BDA, oMQA and ontological query answering
interchangeably. Specifically we follow DL-Lite, the most popular approach
of oBDA, which is based on the intuitive idea of rewriting a query into a
new query which contains all the necessary functionality to give complete
results with respect to the ontology TBox when evaluated on the ABox. We
refer again to Calvanese, De Giacomo et al. [2007] who introduced not only
different variants of DL-Lite, but also an algorithm for ontological query an-
swering which we present in this section and adapt later in Chapter 4. We
now formally define conjunctive queries.

Definition 2.15 (conjunctive query, union of conjunctive queries). A conjunct-
ive query (CQ) is an expression of the form

q(¥) < 3y.¢(X.,y)
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Algorithm 2.1: PerfectRef(q, 7)

Input: Conjunctive query g, TBox 7~
Output: Union of conjunctive queries P

P:={q}
repeat
P =P
foreach q € P’ do
foreach g in q do // expansion

foreach inclusion axiom I in 7~ do
if I is applicable to g then
| P:=PuU{qlg/er(g. D]}
foreach gy, g in g do // reduction
if g; and g, unify then
‘ P := P U {r(reduce(q, g1, 92))}

until P’ = P
return P

where X is a sequence of variables called distinguished variables, y is a se-
quence of variables called non-distinguished variables, and ¢ is a conjunc-
tion of class and property atoms of the forms C(x) and P(x, y) respectively
where x,y are constant symbols from I or variables (distinguished or non-
distinguished). A set of queries with the same head ¢(¥X) is a union of con-
junctive queries (UCQ).

We now define answers of conjunctive queries when evaluated over DL-Lite

knowledge bases.

Definition 2.16 (answer of a CQ over a KB). For a conjunctive query ¢ and
a KB K the answer to q over K is the set ans(g, K), consisting of tuples a of
constants from I such that a™M € gM for every model M of the kB %K.

Since we are rewriting SPARQL queries to SPARQL queries and are not con-
cerned with providing access to non-rRDF databases we use oMQA instead of
the more specific ontology based data access (OBDA).

The owL QL profile allows conjunctive query answering in LoGSPACE
data complexity [Motik, Cuenca Grau et al. 2009].

The function PerfectRef defined in Algorithm 2.1 (as defined by Calvanese,
De Giacomo et al. [2007]) rewrites a CQ g to a UCQ P considering the inclu-
sion axioms of the TBox 7. For a CQ g and two atoms a and b, the expression
gla/b] denotes the conjunctive query resulting from replacing a by b in the
CQ q and the function reduce(q, a, b) returns the conjunctive query resulting
from applying the most general unifier between a and b to g. For an atom g
and an inclusion axiom I, the function gr(g, I), as defined in Algorithm 2.2,
The function 7(q) replaces each unbound variable occurring in the CQ q by

©

_”. Since we will not depend on the reduction step later in this thesis, we will

not go into more detail and refer to Calvanese, De Giacomo et al. [2007] for
formal definitions concerning reduction and unification in particular.
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Algorithm 2.2: gr(g, )

if g = A(x) then

if I = A; C A then return A;(x)

else if I = 3P C A then return P(x,_)

else if I = 3P~ C A then return P(_, x)

Ise if g = P(x,_) then

if I = A C 3P then return A(x)

else if I = 3P; C 3P then return P;(x,_)

else if I = 3P C 3P then return P;(_, x)

Ise if g = P(_, x) then

if I = AC 3P~ then return A(x)

else if I = 3P; C 3P~ then return Py(x,_)

else if I = 3P C 3P~ then return Pi(_, x)

Ise if g = P(x,y) then

if =P, CPorl=P CP then return Pi(x,y)
elseif I = Py C P~ orI = P| C P then return Py(y, x)

[¢)

[¢)

[¢)

Summary The standard Description Logic textbook Baader, Calvanese et al.
[2007] and the more recently published Baader, Horrocks et al. [2017] give an
extensive definition and explanation of Description Logics in general. Krotz-
sch [2012] gives an introduction and discussion of the owL profiles. Bienvenu
and Ortiz [2015] explain omQA and Calvanese, De Giacomo et al. [2009] and
Kontchakov, Rodriguez-Muro and Zakharyaschev [2013] describe oBDA.

2.4 Statistical Linked Data and Provenance

The idea of Linked Data (LD) (or the web of data) aims to enable easier public-
ation of RDF data on the web by relying on the Hypertext Transfer Protocol
(arTP) and thus exploiting the existing infrastructure of the www to publish
and access data. To this end Berners-Lee introduced the following so called

Linked Data principles [Berners-Lee 2006]:

1. Use URI s as names for things

2. Use HTTP URISs so that people can look up those names.

3. When someone looks up a URri, provide useful information,
using the standards (e.g. RDF, SPARQL)

4. Include links to other URI s, so that they can discover more
things

Following the w3c specifications and the definitions above we use the
term resource instead of thing. Furthermore, the Universal Resource Identifiers
(ur1) used in the Linked Data principles where subsumed by 1r1s in the later
versions of the Semantic Web standards: rRDF 1.1 [Klyne, Carroll and McBride
2014], RDFS 1.1 [Brickley and Guha 2014], owL 2 [owL Working Group 2009]
and SPARQL 1.1 [Harris and Seaborne 2013].
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gb:Observation

qb:dataSe\'

gb:DataSet

qb:structureV

gb:DataStructureDefinition

gb:component/q b:dimension‘/ \ﬁb:component/qb:measu re

[ gb:DimensionProperty ] [ gb:MeasureProperty ]

Figure 2.1: [llustration of most important classes of the Rbr Data Cube Vocabulary
with properties (or property chains) between instances of classes; adapted from
“Outline of the vocabulary” in the QB specification.

The amount of data published following the Linked Data principles is con-
tinuously growing [Abele et al. 2017; Ermilov et al. 2016]. Linked Data sources
use lightweight ontologies called vocabularies to structure their data. Repos-
itories such as Linked Open Vocabularies document a wide range of vocabu-
laries [Vandenbussche et al. 2017]. Most of the top used ontology constructs
are covered by owL QL [Glimm, Adian Hogan et al. 2012]. In this work we
reuse two existing vocabularies: the RDF Data Cube Vocabulary for model-
ling multidimensional numerical data and the PROV vocabulary for modelling
provenance information.

2.4.1 RDF Data Cube Vocabulary

The rDF Data Cube Vocabulary (QB) [Cyganiak, Reynolds and Tennison 2014]
is a widely-used vocabulary to describe numeric data using a multidimen-
sional data model [Gray et al. 1997]. @B, as a w3c recommendation has es-
tablished itself as the standard for aggregating and (re-)publishing statistical
observations on the web, with off-the-shelf tools to process and visualise QB
data. Figure 2.1 provides an overview of 9B with the most important classes
and properties.

0B allows to describe datasets/cubes (instances of gb:DataSet) with ob-
servations (instances of gb:Observation). We use the terms (statistical) data-
set, OB dataset and cube synonymously. Every dataset has a certain struc-
ture (instance of gb:DataStructureDefinition (DsD) that—using a chain of prop-
erties gb:component before gb:measure or gb:dimension—defines measures (in-
stances of gb:MeasureProperty) and dimensions (gb:DimensionProperty). Attrib-
utes (gb:AttributeProperty) allow to add information to observations to qual-
ify and interpret the observed values. A gb:DataSet provides all necessary
information about a cube. The gb:DataSet 1Rr1 gives the name of the relation
in the tabular representation defined by the cube. The gb:DataStructureDefini-
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tion—the metadata of the cube/dataset—defines the independent and depend-
ent attributes of the relation as well as their possible attribute values. The
gb:Observation instances describe the entities in the relation.

In the following, we illustrate how the metadata of a population dataset
can be modelled using QB.

eurostat:id/urb_cpopi#ds a gb:DataSet ;

rdfs : label "Population on 1 January by age groups and sex—cities and greater cities ";
gb:structure </dsd/urb_cpopi#dsd>.

eurostat :dsd/urb_cpopl#dsd a gb: DataStructureDefinition ;

gb:component [ gb:dimension dcterms:date] ;
gb:component [ gb:dimension estatwrap: cities ] ;
gb:component [ gb:dimension estatwrap:indic_ur ] ;
gb:component [ gb:measure sdmx—measure:obsValue] .

In the example, a data structure definition (Dsp) defines the independ-
ent, categorical properties of the dataset, so-called dimensions: date, city and
indicator. Also, the DsD defines one dependent numeric property, so-called
measure. The data structure definition could also include all valid dimension
values, such as all city 1r1s for the dimension estatwrap:cities.

Now, we give an example of how one data point can be modelled using

QB:

_:obs1 a gb:Observation ;
gb:dataSet eurostat:id/urb_cpopl#ds;
estatwrap: cities eurostat—cities :Vienna ;
estatwrap:indic_ur eurostat—indic_ur:Population ;
dcterms:date "2013" ;
sdmx—measure:obsValue "1741246" .

The example describes an observation of 1741246 inhabitants of Vienna
in 2013 in the population dataset of Eurostat. The observation is modelled
with a blank node.

The @B specification defines the notion of well-formed cubes [Cyganiak,
Reynolds and Tennison 2014] based on constraints that need to hold on a data-
set. When generating and publishing gB datasets, we ensure that these con-
straints are fulfilled. For instance, when we later generate new observations
via predictions and computations we also generate new datasets containing

these values.

2.4.2 Provenance Annotations

To make observations more traceable and allow to judge the trustworthiness
of data, we go beyond the lightweight approach of using Dublin Core prop-
erties such as dc:publisher to refer from a dataset to its publisher. We use
the prov ontology [Lebo, McGuinness and Sahoo 2013] to add provenance
annotations, such as the agents and activities that were involved in generat-
ing observations from other observations (e.g., predicting, inferencing); Fig-
ure 2.2 gives a highlevel overview of the three main concepts. On a high level
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prov:wasDerivedFrom

prov:wasAttributedTo

prov:Entity j
prov:wasGeneratedByL W prov:used prov:Agent

prov:Activity J

prov:wasAssociatedWith

Figure 2.2: Overview of the PrRoV ontology

prov distinguishes between entities, agents, and activities. A prov:Entity can
be all kinds of things, digital or not, which are created or modified. Activities
are the processes which create or modify entities. An prov:Agent is something
or someone who is responsible for an activity (and indirectly also for an en-
tity). A prov:Activity is something that happens and, in our case, generates
new observations from other observations. PrRov also defines plans which
can be understood as any kind of predefined workflow which a prov:Activity
might follow to create or modify an entity. Additionally ProV also allows to
tag certain activities with time, for example a timestamp when an entity was
created. The following RDF fragment shows a PROV example of two observa-
tions, where a QB observation ex:obs123 was derived from another observa-
tion ex:obs789 via an activity ex:activity456 on the 15th of January 2017 at 12:37.
This derivation was executed according to the rule ex:rule937 with an agent
ex:fred being responsible.
ex:0bs123 prov:generatedAtTime "2017—01-15T12:37:00";
prov:wasDerivedFrom ex:obs789 ;
prov:wasGeneratedBy ex:activity456 .
ex: activity456 prov: qualifiedAssociation [

prov:wasAssociatedWith ex:fred ] ;
prov:hadPlan ex:rule937 .

Summary Wood et al. [2013] and Heath and Bizer [2011] both introduce
Linked Data. Moreau and Groth [2013] describe provenance with the pProv
ontology while the best resource for the RpF Data Cube Vocabulary is still
the official specification [Cyganiak, Reynolds and Tennison 2014].
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PART II

THEORY






Schema-Agnostic Query Rewriting

As afirst contribution, we describe our idea of exploiting sSPARQL 1.1 for query
rewriting to implement owL QL reasoning in a single query. Parts of this
chapter have been published as Bischof, Krotzsch et al. [2014a] and Bischof,
Krotzsch et al. [2014b].

Section 3.1 gives an introduction to schema-agnostic query rewriting and
compares it to ontology-based rewriting techniques. Section 3.2 introduces
owL QL and relate its semantics to a chase procedure. Section 3.3 develops
queries for implementing basic owL QL reasoning in SPARQL 1.1. Section 3.4
extends these queries into a schema-agnostic query rewriting procedure for
conjunctive queries. Section 3.5 defines three approaches to optimize query
evaluation of schema-agnostic query rewriting. Section 3.6 evaluates schema-
agnostic rewriting with a prototype implementation. The prototype is com-
pared with ontology-based rewriting techniques and the different optimiza-
tion approaches are evaluated as well.

3.1 Introduction

SPARQL 1.1 [Harris and Seaborne 2013], the revision of the original w3c spAR-
ot standard [Prud’hommeaux and Seaborne 2008], introduces significant ex-
tensions to the capabilities of the RDF query language [Harris and Seaborne
2013]. Even at the very core of the query language, we can find many not-
able new features, including property paths, value creation (BIND), negation
and extended filtering capabilities. In addition, the SPARQL 1.1 entailment re-
gimes specification defines query answering over owL ontologies, taking full
advantage of ontological information in the data [Glimm and Ogbuji 2013].
Query answering in the presence of ontologies is also known as ontology-
based data access (0BDA) or ontology-mediated query answering (oMmQA)"' and
has long been an important topic in applied and foundational research. Even
before sPARQL provided support for this feature, several projects used onto-
logies to integrate disparate data sources, or to provide views over legacy
databases, e.g. [Calvanese, De Giacomo et al. 2007; Pérez-Urbina, Motik and
Horrocks 2010; Rodriguez-Muro, Kontchakov and Zakharyaschev 2013; Di
Pinto et al. 2013; Kontchakov, Rodriguez-Muro and Zakharyaschev 2013]. The
w3c owL 2 Web Ontology Language includes the owL QL language profile,

1 we will use 0BDA and oMQA
synonymously in this thesis
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2 http://live.dbpedia.org/sparql

which was specifically designed for this application [Motik, Cuenca Grau et
al. 2009]. With the arrival of SPARQL 1.1, every aspect of oBDA is thus sup-
ported by tailor-made w3c technologies.

In practice, however, SPARQL and OwWL QL are rarely integrated. Most
of the works on oBDA address the problem of answering conjunctive quer-
ies (CQs), which correspond to SELECT-PROJECT-JOIN queries in SQL, and (to
some degree) to BGPs in SPARQL. The most common approach for oBDA is
query rewriting, where a given CQ is rewritten into a (set of) CQs that fully
incorporate the schema information of the ontology. The answers to the re-
written queries are guaranteed to agree with the answers of the original quer-
ies, considering the ontology. This approach separates the ontology (used for
query rewriting) from the rest of the data (used for query answering), and
typically the latter is stored in a relational database. Consequently, the re-
written queries are often transformed into sQL for query answering. SPARQL
and RDF do not necessarily play a role in this.

In this chapter, we take a fresh look at the problem of oBDA query rewrit-
ing with SPARQL 1.1 as our target query language. The additional express-
ive power of sPARQL 1.1 allows us to introduce a new paradigm of schema-
agnostic query rewriting, where the ontological schema is not needed for re-
writing queries. Rather, the ontology is stored together with the data in a
single RDF database. This is how many ontologies are managed today, and
it corresponds to the w3c view on owtL and RDF, which does not distinguish
schema and data components. The fact, that today’s oBDA approaches separ-
ate both parts testifies to their focus on relational databases. Our work widens
the scope of owL QL to RDF-based applications, which have hitherto focused
on owL RL as their ontology language of choice.

Another practical advantage of schema-agnostic query rewriting is that
it supports frequent updates of both data and schema. The rewriting system
does not need any information on the content of the database, while the sPAR-
QL processor that executes the query does not need any support for owr. This
is particularly interesting if a database can only be accessed through a restric-
ted SPARQL query interface that does not support reasoning. For example, we
have used our approach to check the consistency of DBPEDIA under owL se-
mantics, using only the public Live DBPEDIA SPARQL endpoint? (it is incon-
sistent: particularly every library is inferred to belong to the mutually disjoint
classes “Place” and “Agent”).

Worst-case reasoning complexity remains the same in all cases, yet our
approach is much more practical in the case of standard reasoning and BGP
rewriting. For general CQs, the rewritten queries are usually too complex for
today’s RDF databases to handle. Nevertheless, we think that our “sPARQL 1.1
implementation” of owL QL query answering is a valuable contribution, since
it reduces the problem of supporting owL QL in an RDF database to the task
of optimizing a single (type of) query. Since owL QL subsumes RDFs, one can
also apply our insights to implement query answering under RDFs ontologies,
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which again leads to much simpler queries.

3.2 OWL QL: RDF Syntax and Rule-Based Semantics

OWL QL is one of the owL 2 profiles, which restricts the owL DL ontology lan-
guage to ensure that reasoning is tractable [Motik, Cuenca Grau et al. 2009].
To ensure compatibility with sPARQL, we work only with the RDF representa-
tion of owL QL here [Patel-Schneider and Motik 2009]. Like owL DL, OWL QL
requires “standard use” of RDFs and OWL vocabulary, i.e., special vocabulary
that is used to encode ontology axioms in RDF is strictly distinct from the on-
tology’s vocabulary, and can only occur in specific triple patterns [de Bruijn
and Heymans 2007; Muifloz, J. Pérez and Gutiérrez 2007]. Only a few special
IRIs, such as owl:Thing, can also be used like ontology vocabulary in axioms.

In the RDF serialisation of owL, classes, properties and individuals are
represented by RDF elements, where complex class expressions and complex
property expressions are represented by blank nodes. Whether an expression
is represented by an IRI or a blank node does not have an impact on ontolo-
gical entailment, so we ignore this distinction. owL DL allows us to use a
single IRI to represent an individual, a class and a property in the same onto-
logy; owing to the restrictions of standard use, it is always clear which mean-
ing applies in a particular case.3 Hence we will also work with one single set
of IRIs.

Next, we define the constrains that an RDF graph has to satisfy to repres-
ent an owL QL ontology. We transfer the syntactical constraints of DL-Lite
in Section 2.3.1 to the RDF representation of owL QL. To this end, consider a
fixed RDF graph G. A property expression in G is an IRI or a blank node x that
occurs in a pattern {x owl:inverseOf P} with P € 1. We use PRP for the set of
all property elements in a given RDF graph. owL QL further distinguishes two
types of class expressions with different syntactic constraints. The set SBC
of subclasses in G consists of all 1r1s and all blank nodes x that occur in a
pattern {x owl:onProperty P; owl:someValuesFrom owl:Thing}, where P € PRP.
The set SPC of superclasses in G is defined recursively as follows. An element
x is in SPC if it is in U B, and G contains one of the following patterns:

= {x owl:onProperty PRP; owl:someValuesFrom y} where y € SPC;
= {x owl:iintersectionOf (yi,...,y,)} where y,...,y, € SPC;
= {x owl:complementOf y} where y € SBC.

G is an owL QL ontology if it uses (only) the following triple “patterns” (unre-
lated to SPARQL triple patterns) to encode axioms:

« {IPRP I}
= {I rdf:type SPC}
= {SBC rdfs:subClassOf SPC}

3 The owL specification uses the
term punning for this feature
[Hitzler, Krotzsch et al. 2009].
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{SBC owl:equivalentClass SBC}

{SBC owl:disjointwith SBC}

{PRP rdfs:range SPC}

{PRP rdfs:domain SPC}

{PRP rdfs:subPropertyOf PRP}

{PRP owl:equivalentProperty PRP}

{PRP owl:inverseOf PRP}

= {PRP owl:propertyDisjointWith PRP}

= {I owl:differentFrom I}

= {B rdf:type owl:AllDisjointClasses; owl:members (SBC, . ..,SBC)}
{B rdf:type owl:AllDisjointProperties; owl:members (PRP,...,PRP)}
{B rdf:type owl:AllDifferent; owl:members (I, ...,I)}

G is an owL QL ontology if every triple in G is part of a unique axiom, a
unique complex class or property definition used in such axioms. For sim-
plicity, we ignore triples used in annotations or ontology headers. Moreover,
we do not consider the following owL QL property characteristics: symmetry,
asymmetry and global reflexivity. Asymmetry and reflexivity are not a prob-
lem, but their explicit treatment would inflate our presentation considerably.
Symmetry, in contrast, cannot be supported with SPARQL 1.1, as we have
shown in Bischof, Krétzsch et al. [2014a]. This is not a major limitation of
our approach, since symmetry can be expressed using inverses. This shows
that rewritability of an ontology language does not depend on ontological

expressiveness alone.

The semantics of owL QL is inherited from owL DL. However, since the
owL QL profile does not support any form of disjunctive information, one can
also describe the semantics by defining a universal model, i.e., a structure that
realizes all entailments of an ontology, but no additional entailments. Such a
“least model” exactly captures the semantics of an ontology.

To define a universal model for owL Q1L, we define a set of RDF-based
inference rules, similar to the rules given for owL RrL in the standard [Motik,
Cuenca Grau et al. 2009]. In contrast to owL RL, however, the application of
rules can introduce new elements to an RDF graph, and the universal model
that is obtained in the limit is not finite in general. Indeed, our goal is not to
give a practical reasoning algorithm, but to define the semantics of owL QL in
a way that is useful for analysing the correctness of the rewriting algorithms
we introduce.

The main rules for reasoning in owL QL are defined in Table 3.1. A rule
is applicable if the premise on the left matches the current rRDF graph and
the conclusion on the right does not match the current graph; in this case,
the conclusion is added to the graph. In the case of rule (3.2), this requires us
to create a fresh blank node. In all other cases, we only add new triples com-
posed of existing elements. Rules like (3.3) are actually schemas for an infinite
number of rules for lists of any length n and any index i € {1,...,n}. Rules
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Table 3.1: RDF inference rules for owL QL

— [] rdf:type owl:Thing (3.1)
?X rdf:itype [owl:onProperty ?P;
owl:someValuesFrom ?C] — ?X ?P [rdf:type ?C] (3.2)
?X rdf:itype [owl:intersectionOf
(?Cy,...,2C;,...,2Cy)] — X rdfitype 2C; (3-3)
?X rdf:type ?C . ?2C rdfs:subClassOf 2D — ?X rdf:type 7D (3-4)
?X rdfitype ?C . ?7C owl:equivalentClass ?D — ?X rdf:type 7D (3.5)
?X rdfitype ?C . 7D owl:equivalentClass ?C — ?X rdf:type 7D (3.6)
?X 7P ?Y . ?C owl:onProperty ?P;
owl:someValuesFrom owl:Thing — ?X rdf:type ?C (3.7)
72X ?P ?Y . 7P rdfs:domain ?C — ?X rdf:type 2C (3.8)
?7X 7P 7Y . 7P rdfs:range 7C — ?Y rdf:type 7C (3-9)
72X ?P ?Y . ?P owl:inverseOf 72Q — ?Y ?Q 72X 3.10)

(
?7X 7P ?Y . ?Q owl:iinverseOf ?P — ?Y ?2Q ?X (
7X 7P ?Y . 7P rdfs:subPropertyOf 2Q — ?X 7Q ?Y (
?X 7P ?Y . ?P owl:equivalentProperty 72Q — 72X 72Q 7Y (3.13)
?X 7P ?Y . ?Q owl:equivalentProperty 7P — 72X 2Q ?Y (
INDIVIDUAL(?X) — ?X rdf:type owl:Thing (
(

X rdf:type owl:Thing . ?Y rdf:itype owl:Thing — ?X owl:topObjectProperty ?Y

(3.15)—(3.16) cover owl:Thing and owl:topObjectProperty, which lead to conclu-
sions that are true for “all” individuals. To ensure standard use, we cannot
simply assert x rdf:type owl:Thing for every IRI x, and we restrict instead to
Ir1s that are used as individuals in the ontology.

We define INDIVIDUAL(x) to be the following SPARQL pattern:

{x rdf:type owl:NamedIndividual} UNION

{x rdf:type 2C . 2C rdf:type owl:Class} UNION

{x ?P ?Y . ?P rdf:type owl:ObjectProperty} UNION
{?Y 7P x . ?P rdf:type owl:ObjectProperty}

Note that this also covers any newly introduced individuals.

Definition 3.1. The chase G’ of an owL QL ontology G is a possibly infinite
RDF graph obtained from G by application of the rules of Table 3.1, where
every rule that is applicable has eventually been applied.

Finally, some features of owL QL can only make the ontology inconsistent,
but not introduce any other kinds of positive entailments, according to the
patterns shown in Table 3.2. If any of these match, the ontology is incon-
sistent, every owL axiom is a logical consequence, and there is no universal
model.

The following corollary follows directly from Definition 3.1 and entail-
ment for the two cases of a consistent and of an inconsistent ontology.
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Table 3.2: RDF inference patterns for inconsistency in owL QL

72X owl:bottomObjectProperty ?Y (3.17)
?X rdf:type owl:Nothing (3.18)
?X rdf:type ?C . ?X rdf:itype [owl:complementOf 2C] (3.19)
?2X rdf:itype ?C . ?X rdf:type ?D . ?C owl:disjointWith ?D (3.20)
?X rdf:type ?C; . ?X rdf:type ?C;.
_:b rdf:type owl:AllDisjointClasses; owl:members (?Cy, ..., ?C;, ..., ?Cj,...,7Cp)  (3.21)
X 7P ?Y . ?2X ?Q ?Y . ?P owl:propertyDisjointWith ?Q (3.22)
?2X ?P; 7Y . ?2X ?P; ?Y . _:b rdf:itype owl:AllDisjointProperties;

owl:members (?P1,...,7P;,...,?Pj,...,7Py) (3.23)
?X owl:differentFrom ?X (3.24)
_:b rdf:type owl:AllDifferent; owl:members (?1,..., 2%, ..., 2%, ..., ?l,) (3.25)

Corollary 3.1. Consider an owL QL ontology G with chase G’ and a basic graph
pattern P. A variable mapping u is a solution for P over G under the owL DL
entailment regime iff either (1) 1 is a solution for P over G’ under simple entail-
ment, or (2) one of the patterns of Table 3.2 matches G’.

3.3 OWL QL Reasoning with SPARQL Path Expressions

Next, we define SPARQL 1.1 queries to solve standard reasoning tasks of the
owL QL profile. We start with simple cases, and then consider increasingly
complex reasoning problems.

We first focus on the property hierarchy. An axiom of the form p rdfs:sub-
PropertyOf q is entailed by an ontology G if, for newly introduced individuals
aand b, GU {a p b} entails {a q b}. By Corollary 3.1, the rules of Section 3.2
represent all possibilities for deriving this information. In this particular case,
we can see that only rules (3.10)—-(3.14) in Table 3.1 can derive a triple of the
form a q b, where q is a regular property. The case g = owl:topObjectProperty
is easy to handle, since p rdfs:subPropertyOf owl:topObjectProperty is always
true (which is also shown by rules (3.15) and (3.16)). In addition, it might be
that G U {a p b} is inconsistent, implied by rules of Table 3.2; we will ignore
this case for now, since it requires more powerful reasoning, and come back
to it later in this section.

Definition 3.2. We introduce sPO, invOf and eqP as abbreviations for rdfs:sub-
PropertyOf, owl:inverseOf and owl:equivalentProperty, respectively, and define
the following composite property path expressions

SpoEQP = (sPO | eqP | "eqP)
Inv = (invOf | “invOf)
sUBPROPERTYOF := (SPOEQP | (INV / SPOEQP™ / INV))*

sUBINVPROPERTYOF := SPOEQP* / INV / SUBPROPERTYOF
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Moreover, for an arbitrary term x, let UNIVPROPERTY[x] be the following
pattern: {owl:topObjectProperty (SPOEQP | INV)* x}.

The pattern SUBPROPERTYOF does not check for property subsumption that
is caused by the inconsistency rules in Table 3.2, but it can be used to check
for subsumptions related to owl:topObjectProperty. This relies on the follow-
ing correctness property of the pattern UNIVPROPERTY|[p]. We provide a par-
ticularly detailed proof here, since many of our later correctness properties

will rely on similar arguments.

Lemma 3.1. Consider a consistent owL QL ontology G with property p € PRP.
Then G entails owl:topObjectProperty rdfs:subPropertyOf p if and only if the
pattern UNIVPROPERTY([p] matches G.

Proof. For the “if” direction, we assume that the pattern UNIVPROPERTY[p]
matches G. We need to show that G entails owl:topObjectProperty rdfs:sub-
PropertyOf p. Using Corollary 3.1, this is equivalent to the claim: the triple
_:a p _:b can be derived by applying the deduction rules of Table 3.1 to
G U {_:a owl:topObjectProperty _:b}. In particular, we know that the latter
is consistent, since otherwise G would clearly be inconsistent as well.

Thus assume a path (SPoEQp | Inv)" of length n > 0 from owl:topObject-
Property to p. We show the claim by induction on n. For n = 0, p = owl:top-
ObjectProperty and the claim is immediate. For n > 0, let p” be the element in
the path that is reached after n — 1 steps in the path (and for which the claim
was already shown by induction). We distinguish cases according to which
of the optional properties g in the pattern connects p’ to p:

= If ¢ = rdfs:subPropertyOf, then we can apply rule (3.12) to derive :a p _:b
from _:a p’ _:b. Since the latter can be derived from G U {_:a owl:topObject-
Property _:b} by the induction hypothesis, the claim follows.

= The cases ¢ = owl:equivalentProperty and g = “owl:equivalentProperty are
similar using rules (3.13) and (3.14), respectively.

= If g = owliinverseOf, we can use the same argument as before to obtain a
derivation of _:a p _:b from G U {_:b owl:topObjectProperty _:a}, using rule
(3.10) in the last step. Note that we apply the induction hypothesis to an
input with _:a and _:b swapped. To get the desired derivation, we note that
_:b owl:topObjectProperty _:a can be derived from _:a owl:topObjectProperty
_:b by applying rule (3.15) to _:a and _:b, followed by rule (3.16).

= The case g = “owl:inverseOf is again similar, using rule (3.11).

For the “only if” direction, assume that _:a p _:b can be derived from the
ontology G U {_:a owl:topObjectProperty _:b} by applying the deduction rules.
This can only be accomplished by applying rules (3.12)-(3.16). Moreover, we
can assume without loss of generality that (3.15) and (3.16) are only applied
at the beginning of the derivation to obtain {_:b owl:topObjectProperty _:a}
from {_:a owl:topObjectProperty _:b} (the latter being the only interesting
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derivation that rule (3.16) could produce here). Thus, to simplify our claim,
consider a derivation of _:a p _:b can be derived from the following:

G U {_:a owl:topObjectProperty _:b, _:b owl:topObjectProperty _:a}

The proof is by induction on the length ¢ of this derivation We claim that
there is a path of the form (SpoEQp | INV)" of length n > 0 from owl:topOb-
jectProperty to p.

If £ = 0, p = owl:topObjectProperty the claim is immediate (with n = 0).
For ¢ > 0, we distinguish cases according to the rule applied in the last step
of the derivation:

= Rule (3.12), (3.13) or (3.14) applied to a previous consequence {_:a p’ _:b}.
Then G contains a triple p” q p for q = rdfs:subPropertyOf, g = owl:equivalent-
Property, or ¢ = “owl:equivalentProperty, respectively. By the induction hy-
pothesis, there is a path as in the claim from owl:topObjectProperty to p’. We
can extend this path by p’ ¢ p.

= Rule (3.10) or (3.11) applied to a previous consequence {_:b p’ _:a}. Then G
contains a triple p’ g p for ¢ = owl:inverseOf or g = “owl:inverseOf, respect-
ively. The induction hypothesis applies since we can always swap _:a and
_b in a derivation. Thus there is a path as in the claim from owl:topObject-
Property to p’. We can extend this path by p’ g p.

= Rules (3.15) cannot occur by our assumption on the derivation. O

The following result shows the essential correctness property of suBProp-
ERTYOF on consistent ontologies.

Proposition 3.1. Consider an owL QL ontology G with properties p,q € PRP
such that GU {_:a p _:b} is consistent. Then G entails p rdfs:subPropertyOf q iff
the pattern {p SUBPROPERTYOF g} UNION UNIVPROPERTY[q]| matches G.

Proof. For the “if” direction, we have to show that the above described calcu-
lus allows us to derive the triple :a g _:b from G U {_:a p _:b} whenever the
pattern {p suBPROPERTYOF g} UNION UNIVPROPERTY[q] matches G. We
consider both cases of the UNION expression.

First, let p SUBPROPERTYOF ¢ be the matching pattern of the query, that
is, we find some n € N and a path from p to g matching the regular expression
(SroEg@p | (INv /SPoEQr* /INV))". We show the claim via an induction over
n. For n = 0 we obtain p = g, therefore _:a g _:b holds by assumption.

For the induction step, assume the claim holds for n and consider a path
matching the expression (SPOEQP | (INV / SPOEQP* / INV))"*!, which means
that there is an individual p’ such that there is a path matching (SPOEQP |
(Inv / SpoEQr* / INV))" from p to p” and a path matching (SpoEqQp | (INV /
SpoEQp* / INV)) from p’ to ¢’. By induction hypothesis, there is a derivation
for :a p’ _:b (t). Now we further analyse the path from p’ to ¢":

= If SpoEQP matches this path then, for each of the possible sub-cases of
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SPoEQP (viz. rdfs:subPropertyOf, owl:equivalentProperty, or “owl:equivalent-
Property) we find an appropriate rule (namely rule (3.12), (3.13), or (3.14)
of Table 3.1, respectively) to derive _:a g _:b from _:a p’ _:b.

= If the path from p’ to ¢ is matched by (INv / SPoEQP* / INV), there are
individuals ¢" and q”’, such that there are (i) an INV path from p’ to ¢/, (ii) a
path from ¢’ to ¢’” matching SPoEQP¥ for some k > 0, and (iii) an INv path
from q”’ to q.
From (1) and (i), we can obtain _:b ¢’ _:a (}) via rule 3.10 or 3.11. Given
(%) and (ii), we can perform another induction over k, recalling the above
argument regarding SPOEQP, to arrive at _:b ¢’ _:a. Now, exploiting (iii)

and rule 3.10 or 3.11 once more, we finally obtain _:a ¢’ _:b as claimed.

For the second part of the UNION expression, we note that from _:a p _:b, we
can infer _:a owl:topObjectProperty _:b by means of rule 3.15 and 3.16. Then,
we can invoke Lemma 3.1 to arrive at _:a g _:b as claimed.

For the “only if” direction, assume G is such that _:a ¢ _:b can be derived
from G U {_:a p _:b} by applying the deduction rules. If :a g _:b can be
derived from G U {_:a owl:topObjectProperty _:b}, then the claim follows from
Lemma 3.1. For the remaining case, we can restrict to derivations of _:a g _:b
using rules (3.10)—(3.14). Clearly, any such derivation is linear, with each rule
applying to a triple in G and a triple of the form _:a ¢’ _:b or _:b ¢’ _:b. Let
P = qo,---,qn = q be the sequence of properties used in the latter. Only
rules (3.10) and (3.11) can swap the order of _:a and _:b, hence there must be
an even number of applications of these rules in the derivation. It is easy to
see that the expression SUBPROPERTYOF hatches exactly these sequences of
properties qq . . . gp. |

We will extend this to cover the inconsistent case in Theorem 3.1 below.
First, however, we look at entailments of class subsumptions. In this case,
the main rules are (3.2)—(3.9). However, several of these rules also depend on
property triples derived by rules (3.10)—(3.14), and we apply our results on
property subsumption to take this into account.

Definition 3.3. Let eqC and sCO abbreviate owl:equivalentClass and rdfs:sub-
ClassOf, respectively. We define property path expressions
INTLISTMEMBER = (owl:iintersectionOf / rdf:rest™ / rdf:first)
SOMEPROP := (owl:onProperty / SUBPROPERTYOF/
(“owl:onProperty | rdfs:domain))
SOMEPROPINV := (owl:onProperty / SUBINVPROPERTYOF / rdfs:range)
suBCLASSOF = (sCO | eqC | "eqC | INTLISTMEMBER |

SOMEPROP | SOMEPROPINV)*
Moreover, we let UNIVCLASS[x] denote the following pattern:

{owl:Thing suBCLASSOF x} UNION
{owl:topObjectProperty ((SPoEQP | INV)" /
(“owl:onProperty | rdfs:domain | rdfs:range)/suBCLASsOF) x}
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We can use SUBCLASSOF to check if a superclass expression in G is subsumed
by a subclass expression in G; in particular, this applies to class names. As
before, we exclude the possibility that one of the classes is incoherent (i.e.,
entailed to be equivalent to owl:Nothing).

Proposition 3.2. Consider an owL QL ontology G with classesc € SPC andd €
SBC such that GU{_:a rdf:type c} is consistent. Then G entails c rdfs:subClassOf
d iff the pattern {c suBCLASSOF d} UNION uN1vCLAss[d] matches G.

Proof. For the “if” direction, we have to show that the above described calcu-
lus allows to derive the triple _:a rdf:type d from GU{_:a rdf:type c} whenever
the pattern {¢ suBCLASsOF d} UNION uN1vCiraAss[d]| matches G. We con-
sider both cases of the UNION expression.

First, let ¢ suBCLASSOF d be the matching pattern of the query, that is,
we find some n € N and a path from c to d matching the regular expression
(sCO | eqC | "eqC | INTLISTMEMBER | SOMEPROP | sOMEPROPINV)". We
show the claim via an induction over n. For n = 0 we obtain a = b, there-
fore _:a rdf:type d holds by assumption. For the induction step, assume the
claim holds for n and consider a path matching the expression (sCO | eqC |
“eqC | INTLISTMEMBER | SOMEPROP | sOMEPROPINV)"™! which means that
there is a class ¢’ such that there is a path matching (sCO | eqC | "eqC |
INTLISTMEMBER | SOMEPROP | soMEPROPINV)" from c to ¢’ and a path
matching (sCO | eqC | "eqC | INTLISTMEMBER | SOMEPROP | SOMEPROPINV)
from ¢’ to d’. By induction hypothesis, we can deduce that _:a rdf:type ¢’ must
hold (). Now we further analyse the path from ¢’ to d’ by separately consid-
ering the 6 disjunctive options:

= ¢/ sCO d’: we can use the induction hypothesis and rule (3.4) to infer the
triple _:a rdf:type d’.

= ¢ eqC d’: we can use the induction hypothesis and rule (3.5) to infer the
triple _:a rdf:type d’.

= ¢ "eqC d’: we can use the induction hypothesis and rule (3.6) to infer
_:a rdf:type d’.

= ¢/ INTLISTMEMBER d’: presuming G to be a well-formed owL QL graph,
the regular expression INTLISTMEMBER only matches inside a structure
of the shape x owl:intersectionOf (xi,...,x,) and connects x with some x;.
Then by the induction hypothesis and rule (3.3) we can infer _:a rdf:type d’.

= ¢’ soMEPROP d’: in this case there must exist p and g connected by a
path matching suBPROPERTYOF such that G also contains the triples ¢’
owl:onProperty p and either d’ owl:onPropertyp or prdfs:domain d’. Again as-
suming well-formedness of G we can apply rule (3.2) to infer _:a p _:b for
some fresh blank node _:b. Consequently, due to Proposition 3.1, we can
infer _:a g _:b. Finally applying either rule (3.7) or rule (3.8), we arrive at
_:a rdf:type d’.

= ¢’ soMEPROPINV d’: in this case there must exist p and g connected by a
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Table 3.3: Pattern EMPTYCLASS[x] for detecting empty classes.

x (sCO | eqC | "eqC | INTLISTMEMBER | owl:someValuesFrom |
(owl:onProperty / (INV | SPOEQP)* / ("owl:onProperty | rdfs:domain | rdfs:range)))*
2C . {
{?C suBCLAssOF owl:Nothing} UNION
{?C suBCrAssOF ?D1. {{?C suBCLASSOF ?D2} UNION uN1vCLrAss[?D2]} . {
{?D1 p1sJOoINTCLASSES ?D2} UNION
{?V rdf:type owl:AllDisjointClasses . TWOMEMBERS|[?V, ?D1,?D2]}
}} UNION
{?C (owl:onProperty / (INV | SPOEQP)*) 7P . {
{?P suBPROPERTYOF owl:bottomObjectProperty} UNION
{?P suBPROPERTYOF ?Q1
{{?P suBPROPERTYOF ?Q2} UNION UNIVPROPERTY[?Q2]} . {
{7Q1 (owl:PropertyDisjointWith | “owl:PropertyDisjointWith) 2Q2} UNION
{7V rdf:type owl:AllDisjointProperties . TWOMEMBERS[?V, ?Q1, 7Q2]}

13

1

path matching suBINVPROPERTYOF such that G also contains the triples
¢’ owl:onPropertyp and prdfs:range d’. We can apply rule (3.2) to infer _:a p
_:b for some fresh blank node _:b. Consequently, exploiting the argument
in the proof of Proposition 3.1, we can infer _:b g _:a. Finally applying rule
(3.9), we arrive at _:a rdf:type d’.

The case for uN1vCLAss[d] being the matching pattern can be shown in a
way analogous to the one above, additionally using Rule (3.15) and rule (3.16)
for the base cases.

For the “only if” direction, we have to analyse all possible proofs. For this,
it is helpful to distinguish two cases: one where a proof can be found that
directly applies the rule (3.15) to all occurrences of proof-tree leafs carrying
_:a rdf:itype d. In such a case, a match to uN1vCrAss[d] can be constructed
from the proof. In all other cases we can construct a match to {¢c SUBCLASSOF

d} in way very analogous to the argument in Proposition 3.2. O

Finally, we must identify classes that are incoherent, i.e., for which the
triple c rdfs:subClassOf owl:Nothing is entailed. To do this, we need to consider
the patterns of Table 3.2.

Definition 3.4. For arbitrary terms x, y and z, let TWOMEMBERS|[Xx, y, z] be
the pattern {x(owl:members/rdf:rest”)?W.?W rdf:first y.?W(rdf:rest™ /rdf:first)z},
and let D1SJOINTCLASSES be the property path expression (owl:disjointWith |
“owl:disjointWith | owl:complementOf | “owl:complementOf). The query pat-
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Table 3.4: Pattern EMPTYPROPERTY[x] for detecting empty properties.

x (INv | SPOEQP |
(“owl:onProperty / (sCO | eqC | “eqC | INTLISTMEMBER | owl:someValuesFrom)™*/
owl:onProperty))* ?P . {
{?P suBPROPERTYOF owl:bottomObjectProperty} UNION
{?P suBPROPERTYOF ?Q1
{{?P suBPROPERTYOF ?Q2} UNION UNIVPROPERTY[?Q2]} {
{?Q1 (owl:PropertyDisjointWith | "owl:PropertyDisjointWith) ?Q2} UNION
{?V rdf:type owl:AllDisjointProperties . TWOMEMBERS[?V, ?Q1, 7Q2]}
}} UNION
{?P (("owl:onProperty | rdfs:domain | rdfs:range) / suBCLAsSOF) 2C . {
{?C suBCLAssOF owl:Nothing} UNION
{7C suBCrassOF ?D1 {{?C suBCrLAssOF ?D2} UNION uN1vCrass[?D2]} {
{?D1 p1sJOINTCLASSES ?D2} UNION
{?V rdf:type owl:AllDisjointClasses . TWOMEMBERS|[?V, ?D1, ?D2]}

1
13

terns EMPTYCLASS[x] and EMPTYPROPERTY[x] are defined as in Table 3.3
and Table 3.4 respectively.

As their names suggest, the patterns of the previous definition allow us to de-
tect classes and properties that must be empty in every model of the ontology.

To prove this, we first make some simpler observations:

Lemma 3.2. The pattern TWOMEMBERS|x, y, z]| matches an ontology G iff G
contains an RDF list x with two distinct elements y and z.

Lemma 3.3. Consider a consistent owL QL ontology G with class c. Then G U
{_:a rdf:type c} is inconsistent iff the pattern EMPTYCLASS|c| matches G.

Proof. The general structure of the proof is as in Lemma 3.1, but with a lot
more cases to consider. We sketch the arguments in order to avoid getting
lost in details here.

First, we can show a property of the first two lines of the pattern in
Table 3.3. Namely, the variable ?C in the pattern generally represents a class
that must be non-empty whenever the class x (¢ in our claim) is non-empty.
Formally: G has a match for the pattern

¢ (rdfs:subClassOf | owl:equivalentClass | "owl:equivalentClass |
INTLISTMEMBER | owl:someValuesFrom |
(owl:onProperty / (INV | SPOEQP)"/
(“owl:onProperty | rdfs:domain | rdfs:range))” d



3.3 OWL QL REASONING WITH SPARQL PATH EXPRESSIONS

if and only if G U {d rdfs:subClassOf owl:Nothing} is consistent but the follow-
ing is inconsistent: G U {_:a rdf:type c, d rdfs:subClassOf owl:Nothing}.

This is shown by easy inductions as in Lemma 3.1. Most importantly, we
need to observe that non-emptiness of classes can directly follow from the
rules (3.1)—(3.9) and (3.15). The cases of (3.1) and (3.15) are not of interest,
since they infer non-emptiness of owl:Thing: d in our claim cannot be a su-
perclass of owl:Thing as this would make G U {d rdfs:subClassOf owl:Nothing}
inconsistent. Of the remaining rules, (3.2)-(3.6) are are covered by the op-
tions rdfs:subClassOf, owl:equivalentClass, “owl:equivalentClass, INTLISTMEM-
BER and owl:someValuesFrom in the pattern, respectively.

For the remaining cases, we need to take derivations of property asser-
tion triples into account. The only relevant rule to derive such triples from
premises of the form _:a rdfitype ¢’ is (3.2). After this, further property triples
are inferred as in Proposition 3.1 using rules (3.10)—(3.14), corresponding (as
shown before) to the expression (INv | SPOEQP)*. Again, owl:topObjectProper-
ty is not of interest here since we assume G U {d rdfs:subClassOf owl:Nothing}
to be consistent. Finally, property assertion triples can be used to transfer new
class assertion triples in rules (3.7)—(3.9), corresponding to the final options
(“owl:onProperty | rdfs:domain | rdfs:range) in the pattern. This correspond-
ence of rules and patterns can be exploited to obtain the desired result by
two inductions, as before.

The remaining parts of the pattern in Table 3.3 lists relevant cases in
which the non-emptiness of the class represented by ?C would lead to incon-
sistency. These cases correspond to the patterns in Table 3.2. The cases (3.18)-
(3.21) are covered by the patterns in the third to seventh line of Table 3.2,
where we use (reasoning similar to) Proposition 3.2 for the essential correct-
ness of subpatterns uUN1vCrAss[?D2] and suBCrLassOF. Cases (3.17), (3.22)
and (3.23) are covered by the remaining lines, where we use Lemma 3.1 and
Proposition 3.1 for the essential correctness of subpatterns SUBPROPERTYOF
and UNIVPROPERTY[?Q2]. Cases (3.24) and (3.25) can only be violated by G
initially and thus do not require checking here.

Lemma 3.2 provides the essential correctness of the pattern TwWoMEM-
BERS|x, ¥, z] used in several places. For cases (3.17), (3.22) and (3.23), we need
to consider property assertion triples that are derived from the non-emptiness
of 2C; the pattern used to find a non-empty property ?P is the same pattern
that already occurred on the second line, and the same reasoning applies.

Using thecorrespondences between inference rules and patterns, we can

thus prove the overall claim. O

Lemma 3.4. Consider a consistent owL QL ontology G with property p. Then
G U {_:a p _:b} is inconsistent iff the pattern EMPTYPROPERTY[p]| matches G.

Proof. The proof follows the same arguments as the proof of Lemma 3.3. In-
deed, many of the subpatterns used are the same, with the main difference
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being that we now start the derivation from property assertion triples rather
than from class assertion triples. O

We can now completely express owL QL schema reasoning in SPARQL 1.1:

Theorem 3.1. An owL QL ontology G is inconsistent iff it has a match for the
pattern

{?X rdf:type 7C . EMPTYCLASS[?C]} UNION

{?X 7P ?Y . EMPTYPROPERTY[?P]} UNION

{?X owl:differentFrom ?X} UNION

{?V rdf:type owl:AllDifferent . TWOMEMBERS|[?V, ?X, 7X]}. (3.26)

G entails ¢ rdfs:subClassOf d forc € SPC andd € SBC iff G is either inconsistent
or has a match for the pattern

{c suBCLASSOF d} UNION un1vCrass[d] UNION empTYCLASS[C]. (3.27)
G entails x rdf:type c iff G is either inconsistent or has a match for the pattern

{{x (rdf:type / suBCLASSOF) c} UNION
{x 7P ?Y . 7P (suBPROPERTYOF / ("owl:onProperty | rdfs:domain)/
suBCLAssOF) ¢} UNION
{?Y 7P x . 7P (suBPROPERTYOF / rdfs:range / suBCLASSOF) c}
} UNION uN1vCLrAss|c] (3.28)

G entails p rdfs:subPropertyOf g for p, q € PRP iff G is either inconsistent or has
a match for the pattern

{p suBPROPERTYOF q} UNION UNIVPROPERTY[g] UNION EMPTYPROPERTY|p].

(3-29)
G entails x p y iff G is either inconsistent or has a match for the pattern
{x 7R y . 7R suBPROPERTYOF p} UNION
{y 7R x . 7R suBINVPROPERTYOF p} UNION
UNIVPROPERTY([p]. (3:30)

Proof. In each of the cases, we can show correctness using similar techniques
as in the proof of Lemma 3.1 and the subsequent proofs shown in this section.
We consider each case individually.

For (3.26), correctness is an easy consequence of Lemmata 3.3 and 3.4,
together with the observation that the two last lines of (3.26) correspond to
the cases (3.24) and (3.25) in Table 3.2. We need to use rules (3.1) (for the first
time) and (3.16) to see that (3.26) also covers the cases where owl:Thing is a
subclass of owl:Nothing, or where owl:topObjectProperty is a subproperty of
owl:bottomObjectProperty.

For (3.27), correctness follows from Proposition 3.2 and Lemma 3.3.

For (3.28), we see from Proposition 3.2 why the first and last line are cor-
rect. However, Proposition 3.2 only covers derivations that start from a class
assertion triple. When checking for the type of an individual in (3.28), the
derivation might also start at property assertion triples given in the ontology.
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Our arguments in the proof of Proposition 3.2 covered property assertion
triples, but only as an intermediate stage of the derivation. It is not hard to
see that the second and third line of (3.28) are similar to the respective ex-
pressions soMEPROP and soMEPROPINV in Definition 3.3, and correctness is
shown using the same reasoning as in the proof of Proposition 3.2.

For (3.29), correctness follows from Proposition 3.1 and Lemma 3.4.

For (3.30), correctness is a consequence of the same reasoning as in the
proof of Proposition 3.1, together with the observation that SUBINVPROPER-
TYOF is similar to sUBPROPERTYOF but swaps the sides. Note that only the
rules (3.10)—(3.14) are relevant for normal derivations (not involving owl:top-
ObjectProperty, which is covered by Lemma 3.1). O

3.4 OWL QL Query Rewriting with SPARQL 1.1

After handling the basic reasoning tasks, namely, consistency checking, sub-
sumption checking and instance checking, we now turn towards query an-
swering over OWL QL ontologies using SPARQL 1.1. Research in owL QL query
answering typically considers the problem of answering conjunctive queries
(CQs), which are conjunctions of owL property and class assertions that use
variables only in the place of individuals, not in the place of properties or
classes (e.g. Calvanese, De Giacomo et al. [2007] or Cali, Gottlob and Pieris
[2012]. Conjunction can easily be represented by a BGP in SPARQL, yet CQs
are not a subset of SPARQL, since they also support (existential quantifica-
tion of) non-distinguished variables. Normal query variables are called distin-
guished, while existentially quantified variables are called non-distinguished.
Distinguished variables can only bind to elements of the ontology, whereas
for non-distinguished variables it suffices if the ontology implies that some

binding must exist.

Example 3.1. Consider an owL ontology with the assertion :peter rdf:type
:Person and the following axiom:

:Person rdfs:subClassOf [owl:onProperty :father; owl:someValuesFrom :Person|

This implies that :peter has some :father but the ontology may not contain
any element of which we know that it plays this role. In this case, the SPAR-
QL pattern {?X :father ?Y}, equivalent to the conjunctive query ¢(?X,?Y) «
:father(?X, 7Y), would not have a match with ?X = :peter under owL DL entail-
ment. In contrast, if the variable ?Y were non-distinguished, as in the conjunct-
ive query q(?X) « 3?VY:father(?X, ?Y), the query would match with ?X = :peter

(and ?Y would not receive any binding). o

SPARQL can only express CQs where all variables are distinguished. To define
this fragment of sPARQL, recall that the owL DL entailment regime of SPAR-
QL 1.1 requires every variable to be declared for a certain type (individual,

43



44

SCHEMA-AGNOSTIC QUERY REWRITING

object property, datatype property, or class) [Glimm and Ogbuji 2013]. This
requirement is the analogue of “standard use” on the level of query patterns,
and it allows us to focus on instance retrieval here. We thus call a Basic Graph
Pattern P CQ-pattern if:

1. P does not contain any OwWL, RDF, or RDFSs IRIs other than rdf:type in prop-
erty positions,

2. all variables in P are declared as required by the owL DL entailment re-
gime,

3. property variables occur only in predicate positions,

4. class variables occur only as objects of triples with predicate rdf:type.

Rewriting CQ-patterns is then a straightforward application of Theorem 3.1:

Definition 3.5. For a triple pattern x rdfitype c, the rewriting [x rdf:type c]
is the graph pattern (3.28) as in Theorem 3.1; for a triple pattern x p y with
p € PRP, the rewriting [x p y] is the graph pattern (3.30). The rewriting [P]
of a CQ-pattern P is obtained by replacing every triple pattern s p o in P by

{[s p o] }-

The following theorem follows from Definition 3.5, Theorem 3.1 and the proof
of Theorem 3.1.

Theorem 3.2. If G is the RDF graph of a consistent owL QL ontology, then
the matches of a CQ-pattern P on G under owL DL entailment are exactly the
matches of [P] on G under simple entailment.

As a side remark, for this thesis we are not interested in rewriting general
conjunctive queries with non-distinguished variables. However, in Bischof,
Krotzsch et al. [2014a] we show how to obtain also such a rewriting.

Limitations We have seen that schema-agnostic query rewriting works for
(almost) all of owL QL, so it is natural to ask how far this approach can be
extended. We outline the intuition of the natural limitations of SPARQL 1.1
as a query rewriting language and point out extensions to overcome these
limits.

In Section 3.2, we excluded owl:SymmetricProperty from our considera-
tions, because SPARQL 1.1 lacks the necessary expressivity to handle the RDF
encoding [Bischof, Krétzsch et al. 2014a]. However, one can write p rdfitype
owl:SymmetricProperty as p rdfs:subPropertyOf [owl:inverseOf p]| and thus indir-
ectly allow symmetric properties. One possible approach to directly deal with
owl:SymmetricProperty is nsPARQL, which has been proposed as an extension
of sPARQL 1.0 with a form of path expression that can test for the presence of
certain side branches in property paths [J. Pérez, Arenas and Gutierrez 2010].
Similar test expressions have been considered in 0BDA recently [Bienvenu,
Calvanese et al. 2014].

By complexity-theoretic arguments we can furthermore exclude most ex-



3.5 OPTIMISATION AND IMPLEMENTATION REMARKS 45

tensions of owL QL as well as other owL profiles [Bischof, Krotzsch et al.
2014a]. These complexity-theoretic limitations can only be overcome by us-
ing a more complex query language. Many query languages with P-complete
data complexity can be found in the Datalog family of languages (see for ex-
ample Abiteboul, Hull and Vianu [1994]), which are supported by RDF data-
bases like owriM and Oracle 11g that include rule engines.

3.5 Optimisation and Implementation Remarks

Theorem 3.2 provides a procedure to rewrite CQ-patterns under owL DL en-
tailment to SPARQL 1.1 graph patterns under simple entailment. With this re-
writing procedure, called BGr Schema-Agnostic Rewriting (SAR) we can rewrite
SPARQL queries but we in real-world queries will need to consider several
practical issues. In this section we discuss these issues and introduce three

orthogonal optimisation approaches to improve query evaluation times.

3.5.1 Implementation Remarks

Blank nodes cannot be shared across BGPs in SPARQL [Harris and Seaborne
2013, §4.1.4]. However, since SAR replaces each triple pattern with a UNION
pattern, this restriction would lead to invalid queries. For example, the blank
node _:x in the BGP {_:x rdfitype b . _:x ¢ d} would be split across several
BGPS. The mapping ¢ from blank nodes to RDF terms (see Definition 2.8) is
“lost” outside of the BGP. Therefore, blank node mappings for the same blank
node _:x from different BGPs cannot be joined, which contradicts the intended
semantics. Since SPARQL variables can substitute blank nodes (under simple
entailment) [Gutierrez, Hurtado and Mendelzon 2004; de Bruijn, Franconi
and Tessaris 2005], we can retain the semantics by replacing each blank node
in a BGP with a unique fresh variable. We call these variables blank node
variables.

Multiset semantics In the preceding sections we considered sPARQL 1.1 un-
der set semantics for easier handling. Since the official SPARQL semantics
[Harris and Seaborne 2013] uses multisets, an implementation of SAR has to
cater for duplicate results.* To ensure correct answer cardinalities we could
embed each BGP in a SPARQL 1.1 SELECT DISTINCT sub-query which projects
the temporary variables away, but keeps the blank node variables which
should only be projected away in the end.

In practice, however, users rarely rely on such semantically exact beha-
viour, but will either use DISTINCT> for the whole query or accept duplicate
results. For the rest of this chapter we will accept duplicate results. We note
that this might lead to incoherent results considering complex operators such
as solution modifiers, grouping and aggregates.

4 This applies to other query
rewriting techniques as well, if the
target language, like for example
sQL, has a multiset semantics.

5 which also comes at a certain
computational cost
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AN IMPLEMENTATION has to consider two cases:
First, ccording to (3.28) a triple pattern x rdf:type c is rewritten as follows
(expanding UNIVCLASS):

{{x (rdf:type / suBCLASSOF) c} UNION
{x 7P ?v.
?P (suBPROPERTYOF / (“owl:onProperty | rdfs:domain) / suBCLASSOF) ¢} UNION
{?Y 7P x . 7P (suBPROPERTYOF / rdfs:range / suBCLASSOF) ¢} UNION
{owl:Thing sUBCLASSOF ¢} UNION
{owl:topObjectProperty ((SPOEQP | INV)*/
(“owl:onProperty | rdfs:domain | rdfs:range)/suBCLAssOF) c}} (3.31)

Second, for an arbitrary predicate p € PRP the triple pattern x p y is rewritten
according to (3.30) as follows (expanding SUBINVPROPERTYOF):

{{x 7R y . 7R suBPROPERTYOF p} UNION
{y 7R x. 7R SPOEQP" / INV / SUBPROPERTYOF p}
} UNION UNIVPROPERTY[p] (3.32)

The SAR rewriting replaces each triple pattern of a SPARQL query by one of
these complex graph patterns. Although the queries grow only by a constant
factor, the resulting queries make heavily use of complex path expressions.
When expanding the macros in these graph patterns to their definitions—see
Listing 3.1 for expanding the macros of (3.31) and Listing 3.2 for expanding the
macros of (3.32), where the line numbers given in the margin of the Listing
match the lines in the equations—the need for optimization becomes appar-
ent. To address this need we introduce three optimization approaches:

Algebraic Path Equivalences Without relaxing the main assumption of SAR
(no knowledge of the rRDF graph required for rewriting) we can implement
query optimization heuristics using algebraic equivalences

Remove Irrelevant Properties from Paths By using information about the owL
and RDFs properties used in the ontology we can simplify the path expres-
sions and in some cases also remove BGPs

Path Materialization By allowing updates to the TBox of the RDF graph we
can materialise certain path expressions and thereby use a partial ontology

saturation approach.

In the remainder of this section we describe these three approaches in detail.

3.5.2 Algebraic Path Equivalences

A spPARQL sequence path could be translated to a BGp [Harris and Seaborne
2013, §18.4]. The path expression x p/q y is thus translatedtox p ?v.?vgq y
(with ?v being a fresh variable). We can generalize this to extract a common
path fragment p over a UNION with the same object y.
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Listing 3.1: Resulting graph pattern when expanding all macros of (3.31)

{{ x rdf:type/(((((rdfs:subClassOflowl:equivalentClass)| *owl:equivalentClass)|((owl:intersectionOf/(rdf

‘rest)*)/rdf:first))|((owl:onProperty/((((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty)|(((owl:inverseOf|*owLl:inverseOf)/(((rdfs:subPropertyOf|owl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf))))*)/(*owl:
onProperty|rdfs:domain)))|((((owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)|*
owl:equivalentProperty)|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOf|owl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf| *owl:inverse0f))))*)/ (owl:
inverseOf|*owl:inverseOf))/(((rdfs:subPropertyOf|lowl:equivalentProperty)| *owl:
equivalentProperty))*)/rdfs:range))* ¢ } UNION

{x?P7Y.
?P ((((rdfs:subPropertyOflowl:equivalentProperty)|*owl:equivalentProperty)|(((owl:inverseOf| *owl:

inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:equivalentProperty))*)/(owl:
inverseOf|*owl:inverseOf))))*/(*owl:onProperty|rdfs:domain)/(((((rdfs:subClassOf|owl:
equivalentClass)|*owl:equivalentClass)|((owl:intersectionOf/(rdf:rest)*)/rdf:first))|((owl:
onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty)|(((owl:
inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverse0f))))*)/(*owl:onProperty|rdfs:domain)))
|((((owl:onProperty/((((rdfs:subPropertyOflowl:equivalentProperty)|*owl:equivalentProperty)
|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:
equivalentProperty))*)/(owl:inverseOf| *owl:inverseOf))))*)/(owl:inverseOf| *owl:inverseOf))/(((
rdfs:subPropertyOf|owl:equivalentProperty)|*owl:equivalentProperty))*)/rdfs:range))* ¢ }
UNION

{2Y 7P x . ?P ((((rdfs:subPropertyOfjowl:equivalentProperty)|*owl:equivalentProperty)|(((owl:

inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf))))*/rdfs:range/(((((rdfs:subClassOf|owl:
equivalentClass)|*owl:equivalentClass)|((owl:intersectionOf/(rdf:rest)*)/rdf:first))|((owl:
onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:equivalentProperty)|(((owl:
inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverse0f))))*)/(*owl:onProperty|rdfs:domain)))|((((
owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty)|(((
owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf))))*)/(owl:inverseOf| "owl:inverseOf))/(((
rdfs:subPropertyOf|lowl:equivalentProperty)|*owl:equivalentProperty))*)/rdfs:range))* c }
UNION

{owl:Thing (((((rdfs:subClassOf|owl:equivalentClass)|*owl:equivalentClass)|((owl:intersectionOf/(rdf:

rest)*)/rdf:first))|((owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:
equivalentProperty)|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOf|owl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf))))*)/(*owl:
onProperty|rdfs:domain)))|((((owl:onProperty/((((rdfs:subPropertyOf|lowl:equivalentProperty)|*
owl:equivalentProperty)|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOf|owl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf| *owl:inverse0f))))*)/ (owl:
inverseOf|*owl:inverseOf))/(((rdfs:subPropertyOflowl:equivalentProperty)| *owl:
equivalentProperty))*)/rdfs:range))* ¢ } UNION

{ owl:topObjectProperty ((((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:equivalentProperty)|(

owl:inverseOf|*owl:inverseOf)))*/((*owl:onProperty|rdfs:domain)|rdfs:range) /(((((rdfs:
subClassOflowl:equivalentClass)|*owl:equivalentClass)|((owl:intersectionOf/(rdf:rest)*)/rdf:first
))|((owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty)
|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf))))*)/(*owl:onProperty|rdfs:domain)))|((((
owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty)|(((
owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverse0f))))*)/(owl:inverseOf| *owl:inverseOf))/(((
rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty))*)/rdfs:range))* c } }
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Listing 3.2: Resulting graph pattern when expanding all macros of (3.32)

{{x 7R ?y. 7R (((rdfs:subPropertyOflowl:equivalentProperty)|*owl:equivalentProperty)|(((owl:
inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|"owl:inverseOf)))* p } UNION

{y 7R x . ?R (((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:equivalentProperty))*/(owl:
inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty)|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOfjowl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf)))* p }

} UNION { owl:topObjectProperty (((rdfs:subPropertyOf|lowl:equivalentProperty)| *owl:
equivalentProperty)|(owl:inverseOf|*owl:inverseOf))* p } }

Lemma 3.5. For the IRIs p, p1, P2, and the RDF terms xi, Xz, y:
{x1p1/p y} UNION {x2 p2 / p ¥y} = {2V p ¥} . {{x1 p1 2V} UNION {x; p, ?v}}

where 2V is a fresh variable. A similar equivalence holds for distributivity of a
shared prefix path over UNION.

Proof. This follows from the definition of the sequence operator and the dis-
tributivity of the join (.) operator over UNION [J. Pérez, Arenas and Gutierrez
2009; Schmidt, Meier and Lausen 2010]. O

Definition 3.6. For (3.31) the algebraic path equivalences optimisation (OE) ap-
plies Lemma 3.5 from left to right to extract SUBCLASSOF. The triple pattern
testing the class c being a superclass of owl:Thing is replaced by a BIND pattern.
Applying OE to (3.31) thus results in the following graph pattern:

{{?V suBCLASsSOF c}.
{{x rdf:type 2V} UNION
{x ?P ?Y . 7P suBPROPERTYOF / ("owl:onProperty | rdfs:domain) ?vV} UNION
{?Y 7P x . 7P (suBPROPERTYOF / rdfs:range) 7V} UNION
{BIND(owl:Thing AS ?V)} UNION
{owl:topObjectProperty (SPoEQP | INV)*/
("owl:onProperty | rdfs:domain | rdfs:range) ?V}}} (3.33)

For (3.32) OE applies the equivalence (3.5) to reuse sSUBPROPERTYOF in
the arbitrary predicate rewriting (note that in the first BGp we could replace
R by V):

{7V suBPrOPERTYOF p}.
{{x 2V y} UNION
{y 7R x . 7R SpoEQpr* / INV 2V}
} UNION UNIVPROPERTY[p] (3.34)

Additionally, we will need the following equivalence later for the path mater-

ialization optimizations:
P =(@)? (335)
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Listing 3.3: Resulting graph pattern when expanding all macros of (3.33)

{2V (((((rdfs:subClassOf|owl:equivalentClass)|*owl:equivalentClass)|((owl:intersectionOf/(rdf:rest)*)/
rdf:first))|((owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:
equivalentProperty)|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf|*owl:inverseOf))))*)/(*owl:
onProperty|rdfs:domain)))|((((owl:onProperty/((((rdfs:subPropertyOf|owl:equivalentProperty)|*
owl:equivalentProperty)|(((owl:inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOf|owl:
equivalentProperty)|*owl:equivalentProperty))*)/(owl:inverseOf|*owl:inverse0f))))*)/ (owl:
inverseOf|*owl:inverseOf))/(((rdfs:subPropertyOf|lowl:equivalentProperty)| *owl:
equivalentProperty))*)/rdfs:range))* c } .

{{x rdf:itype 2V} UNION

{x 7P _:b0 .?P ((((rdfs:subPropertyOflowl:equivalentProperty)|*owl:equivalentProperty)|(((owl:
inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|*owl:inverse0f))))*/(*owl:onProperty|rdfs:domain) ?
V}UNION

{_:b17?P x . ?P ((((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:equivalentProperty)|(((owl:
inverseOf|*owl:inverseOf)/(((rdfs:subPropertyOflowl:equivalentProperty)|*owl:
equivalentProperty))*)/(owl:inverseOf|Aowl:inverse0f))))*/rdfs:range ?V } UNION

{ BIND(owl:Thing AS ?V) } UNION

{ owl:topObjectProperty ((((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:
equivalentProperty)|(owl:inverseOf|*owl:inverseOf)))*/((*owl:onProperty|rdfs:domain)|rdfs
:range) V11}}

3.5.3 Remove Irrelevant Properties from Paths (Ol)

If a property p never occurs in a graph, then no triple pattern with predicate
p will evaluate to a solution mapping. Similarly, when p is used in a path
pattern, then this path step will never evaluate to a solution mapping. Thus
we can safely remove p from the path pattern and reduce the length and,
in some cases, an operator of the paths, while still evaluating to the same
solution mappings.

In SAR we are interested in removing OWL/RDFs properties not occurring
in the TBox, thus achieving a pay-as-you-go behaviour: ontologies using only
few different RDFS and owL properties lead to shorter rewritten queries.

Definition 3.7. Let € be the empty reflexive property of an arbitrary RDF graph
G: each 1R1 in G is connected to itself via €, which is disjoint from any other
property. We use L as an abbreviation for owl:bottomObjectProperty. For ar-
bitrary path expressions pi, ps, p; we define the following O/ rewriting rules

on property expressions:

L' —e (3-36)

€ —e (3-37)

L—> 1 (3.38)

e e (3:39)
prlLlp:—pi|pe (3.40)
plelplelps—pilelps|ps (3-41)
p/L/pr— L (3.42)
pi/e/pr—pi/p2 (3.43)
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An Ol rule p” — p” is applicable on a path expression p if the path expression
p’ occurs in p; in this case p’ is replaced by p”’. The exhaustive application
of the Ol rewriting rules until no rule is applicable anymore, is denoted as

p’ _>* pll'
Optional patterns absorb L in rule (3.40) while sequence patterns absorb e

inrule (3.43). A property removed from a sequence in rule (3.42) is an effective
way to remove the whole sequence.

Example. Let p be the path expression a | (b / ¢*). Let us examine what hap-
pens when ignoring each of a, b and c in p separately:

= When ignoring a in p, we can apply (3.40) and get the path expression b / c*.

= When ignoring b in p, we can apply (3.42) and get the path expression con-
sisting only of a.

= When ignoring c in p, we can apply first (3.36) and get the path expression
p’ =a| (b/e). Next we can apply (3.43) on p’ and end up with the path
expression a | b. o

We define I as the set of all owL QL properties and I’ C I as the set of
all owL QL properties to ignore. In our case I’ is comprised of those owL QL
properties not occurring in G (we could also selectively ignore properties
despite them occurring in the ontology). Then for each p € I’ we replace p
by L. The Ol rewriting rules are applied until no rule is applicable any more.
Since each rule shortens the path by removing either a path operator or an
IR1, exhaustive rule application is guaranteed to terminate.

Example. When ignoring rdfs:range by replacing rdfs:range with L in the
paths of (3.33) the one BGP containing rdfs:range will be removed completely
by applying the rules (3.42), (3.48) and (3.49). Another interesting case occurs
when ignoring owl:inverseOf, thus replacing owl:inverseOf with _L: The pattern
expression SUBCLAsSOF is reduced from originally 36 properties (10 of which
are owl:inverseOf) to 12 properties:

sUBCLASSOF —™* (sCO | eqC | "eqC |
(owl:intersectionOf / rdf:rest” / rdf:first) |
(owl:onProperty / (sPO | eqP | “eqP)*/("owl:onProperty | rdfs:domain)))*

Further ignoring owl:onProperty would remove the third line (apart from the
final “)*”), while removing any of owl:intersectionOf or rdf:first would remove
the second line of the path expression above. Listing 3.4 shows the complete
resulting pattern when ignoring owl:inverseOf in Listing 3.3. By ignoring only
a single owL QL property, owl:inverseOf, we could significantly shorten the
path expressions. ¢

AFTER EXHAUSTIVELY APPLYING the Ol rewriting rules €, which is not dir-
ectly expressible in SPARQL, can still occur in either 1. in one or more optional
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Listing 3.4: Resulting graph pattern when expanding all macros of (3.33) and ignoring
owl:inverseOf with Ol

{{ 2V ((((rdfs:subClassOf|owl:equivalentClass)|*owl:equivalentClass)|((owl:intersectionOf/(rdf
srest)*)/rdf:first))|((owl:onProperty/(((rdfs:subPropertyOflowl:equivalentProperty)| *owl
:equivalentProperty))*)/(*owl:onProperty|rdfs:domain)))* c }

{{x rdf:type 72V} UNION

{x ?P _:b0 . ?P (((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty))*/(*
owl:onProperty|rdfs:domain) ?V } UNION

{ _:b1?P x . ?P (((rdfs:subPropertyOf|owl:equivalentProperty)| *owl:equivalentProperty))*/
rdfs:range ?V} UNION

{ BIND(owl:Thing AS ?V)} UNION

{ owl:topObjectProperty (((rdfs:subPropertyOf|owl:equivalentProperty)|*owl:
equivalentProperty))*/((*owl:onProperty|rdfs:domain)|rdfs:range) 7V} } }

patterns as a result of (3.41) or 2. as the only remaining property of the whole
path expression, as a direct result of (3.36), (3.37) or (3.39). We now discuss
these two cases.

1. This case is resolved by rewriting each such optional pattern to the spar-
QL’?’ optional operator:

plelp:— (pi|p2)?

2. Subject and object must represent or bind to the same rRDF term, is resolved
by the following rewriting rules, where r is an RDF term and the expression
gp[x/x’] replaces each occurrence of an RDF term or variable x in the
graph pattern gp by the RDF term or variable x’.

gp-{WVext—gp[v/r] (3-44)
gp-{x e W} — gp[?V/r] (3-45)
{?V e x} — {BIND(x AS V) } (3.46)
{x € 2V} — {BIND(x AS ?V) } (3-47)

It is sufficient to address the cases of either object or subject being a vari-
able for the triple expressions in (3.33) and (3.34). The rules (3.44) and (3.45)
are correct because in our rewritings ?V is always a temporary variable oc-
curring only in gp.

Now WE CAN GENERALISE the Ol rewriting rules to special cases of triple pat-
terns and a graph pattern gp, to further simplify graph patterns. Rules (3.48)
and (3.49) propagate triple patterns with L as predicate.

gp-{xLy}t—{sLlo} (3.48)
gp UNION {x L y} — gp (3.49)

The Ol optimization of a path expression p considering the RDF graph
G, denoted Ol (p, G) is then defined as the exhaustive application of the Ol
rules on p’ where p’ is the path expression obtained when replacing all owr
properties not occurring in G by L.
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In the degenerated case of ignoring all owL and RDFs properties, Ol re-
stores the original triple patterns, i.e., after applying Ol to the result of SAR
the patterns (3.31) and (3.32) collapse back to x rdfitype ¢ and x p y re-
spectively. The same happens when applying Ol to OE because in these cases
suBCLASSOF — € and sUBPROPERTYOF — ¢ the rules (3.44) and (3.45) are
applied.

3.5.4 Path Materialization

Since SAR always produces the same path patterns regardless of the onto-
logy, it makes sense to materialize these paths to RDF predicates and adapt
the rewriter accordingly by replacing the path expression by the temporary
predicate.

Definition 3.8. We define a materialization rule ¢ := p for an 1rI ¢ and a
path expression p. The path expression p is materialized to an RDF graph G
according to the materialization rule ¢ := p by adding a triple x ¢ y to G
whenever x p y matches G.

Materializing a Kleene star expression An issue arises if the outermost oper-
ator of a path pattern p is a Kleene star (or the optional ‘?°).

Example 3.2. If the WHERE part of a cache insert query of some path p looks
like ?s p* ?p then the cache property would be inserted as an identity relation
for every 1RI in the graph. Not just “ontology nodes” would be affected by
also “ABox nodes”. Therefore, as the number of cache triples increases with
the data, we have to recompute the materialization for every update, not only
TBox updates. O

Materializing Kleene star paths in this manner makes separating TBox
and ABox useless. We apply equivalence (3.35) to replace the Kleene star by
the one-or-more operator + in this case, and in the query rewriting the cache
property is used in an optional pattern.

As an alternative to the optional operator, we could also create a UNION of
a triple pattern and a pattern binding the original object term to the variable.

First we define two new classes c:UnivClass and c:UnivProp to mark uni-
versal classes and universal properties, respectively. For this we generalize
the notion of materialization rules to allow an RDF triple on the left hand side
and a macro with a variable on the right hand side. Membership of these two
new classes is computed with the following macros:

¢ rdf:type c:UnivClass := UNIVCLASS[c]

p rdfitype c:UnivProp := UNIVPROPERTY|[p]

To simplify the notation in the rest of this chapter we assume that in
graph G for every universal class ¢ (and property p), which must match Un1-
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vCirass[c] (and UNIVPROPERTY[p]), there exists a triple ¢ rdf:type c:UnivClass
(and p rdf:type c:UnivProp.
For the materialization optimization we define two different variants:

Materialize complete paths By materializing complete path expressions into
the rDF graph and reducing each path pattern in the query to one triple
pattern.

Materialize Kleene star expression By materializing the longest Kleene-star
expression into the RDF graph and reducing this complex path expression
with a single property.

The first variant shortens the path maximally, while the second variant mater-
ializes only the (presumably) most costly operator: the Kleene star. We expect
better query evaluation times from the first variant, and more space efficient
materialization, i.e. less materialized triples, from the second variant. We now
explain both variants in detail.

Before we detail the two variants of the mterialization optimization, we
define the needed materialization rules.

Definition 3.9. For the path expression p occurring in the patterns (3.28) and
(3.30) we define the following materialization rules:

c:dom = sUBPROPERTYOF / (“owl:onProperty | rdfs:domain) (3.50)
c:rng = suBPROPERTYOF / rdfs:range (3.51)
c:sc := (sCO | eqC | "eqC | INTLISTMEMBER | SOMEPROP | SOMEPROPINV)T (3.52)
c:sp == (SpoEqp | (INv / SPoEQP* / INv))* (3.53)
c:spi := SPoEgQp* / INV (3.54)
c:spo = SpoEgp* (3.55)

Materialize complete paths By materializing the complete path expressions
we reduce the path pattern maximally, to a single triple pattern. We expect
better query evaluation times from this optimization variant than from the
following one.

Definition 3.10. Let G be an RDF and gp either the graph pattern (3.28) or
(3.30) Furthermore ¢; := p; is one of the materialization rules (3.50), (3.51) or
(3.54), and d; = g; is one of the materialization rules (3.52) or (3.53). Then
OMA(gp) denotes the graph pattern resulting from replacing p; by ¢ and from
replacing g; by d;?. Moreover OMA(G) denotes the RDF graph obtained by
adding a triple x ¢; y for each match of x p; y, and adding x d; y for each
match of x g; y.

We can materialize complete paths created during SAR rewriting and thus re-
duce the path patterns in the rewriting to triple patterns and to optional path
patterns.

In the rewriting the materialization issue discussed above affects the c:sc
and the c:sp properties. Accordingly, we apply equivalence (3.35) to the c:sc
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and the c:sp properties. The pattern (3.33) is rewritten by OMA as follows:

{?V csc? c}.
{{x rdf:type 2V} UNION
{x ?P ?Y . ?P c:dom ?V} UNION
{?Y 2P x . 7P c:rng ?V}
} UNION {c rdf:type c:UnivClass}} (3.56)

The pattern (3.34) is rewritten by OMA as follows:

{7V csp? p}.
{{s ?V o} UNION
{0 7R's.?R c:spi 2V}
} UNION {p rdf:type c:UnivProp}} (3.57)

Materialize longest Kleene star expression A more economic approach, con-
sidering the number of materialized triples, is to materialize only the outer-
most Kleene star path fragments, since these fragments are usually not covered
by indexes in existing SPARQL engines and are therefore hard to evaluate.

Definition 3.11. Let G be an RDF and gp either the graph pattern (3.28) or
(3.30) Furthermore ¢; := p; is one of the materialization rules (3.52), (3.53) or
(3-55). Then OMS(gp) denotes the graph pattern resulting from replacing p;
by ¢;?. Moreover OMS(G) denotes the RDF graph obtained by adding a triple
x ¢; y for each match of x p; y.

Since all the paths materialized in this case have the Kleene star as the outer-
most operator, all cache properties are affected by the materialization issue
discussed above.

The cache properties cache:starSC and cache:subClassOf from OMA optim-
ization are the same. The same applies to the properties cache:starSP and
cache:subPropertyOf from OMA.

The optimizations Or and Oprx (meaning both OMA and OMS) are ortho-
gonal and can be combined to Ojpx. The query rewriting for Oy is the
same as for Oy, while the property removal is applied to the materialization
queries. The pattern (3.33) is rewritten by OMS as follows:

{7V c:sc? c}.
{{x rdf:type 2V} UNION
{x 7P 2y . ?P (c:sp? / ("owl:onProperty | rdfs:domain)) ?V} UNION
{?Y P x . 7P (c:sp? / rdfs:range) 7V}
} UNION {c rdf:type c:UnivClass}} (3.58)

The pattern (3.34) is rewritten by OMS as follows:
{2V c:sp? p}.
{{s 2V o} UNION
{0 7R s. 7R (c:spo? / INV) 2V}
} UNION {p rdf:type c:UnivProp}} (3.59)
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This the semantics but might be infeasible in practice, because the whole
materialization, including all cache properties, has to be recomputed for every
TBox update. Depending on the actual changes of the TBox, a more refined
materialization implementation can deliver better performance. Examples for
such improvements are: (i) re-materializing only paths affected by the TBox
change (ii) re-materializing only paths for classes or properties affected by
the TBox change. Such an algorithm is beyond the scope of this work.

3.5.5 Implementation

We implemented the SAR rewriter as well as the optimization variants intro-
duced in this section. The system takes as an input SPARQL query and rewrites
it to a new SPARQL 1.1 query considering the chosen optimization strategy.
The resulting query can then be evaluated by the SPARQL 1.1 engine.

The novel main component of a SAR system is the SAR query rewriter.
We implemented the SAR rewriting component as a Java library built upon
Apache Jena [Apache Jena 2017(a)] for parsing and manipulating sPARQL
queries. We provide a command line application and a web user interface.®
The implementation can be configured to produce a query rewriting for each
of the optimizations described in this section.

Additionally, we implemented an ontology analyser which uses ASK quer-
ies to list which owL/RDFs properties are not used by an ontology; this is
needed for Ol.

3.6 Evaluation

Comparing a SAR implementation to other systems is difficult because SAR
makes different assumptions than other systems.

It is important to note that query rewriting for owr QL usually depends
not only on the query but also the ontology. The ontology is not needed dur-
ing query evaluation but for query rewriting, whereas the SAR rewriting is
independent of the ontology but needs the ontology during query evaluation.
This means other owL QL rewriters need to rewrite the query again when
the ontology changes, whereas the resulting SAR queries remain unchanged
(except for ontology dependent optimizations).

Additionally, other owL QL rewriters handle and produce only conjunct-
ive queries and not SPARQL queries. These queries are not necessarily meant
to be evaluated on sPARQL engines, although that would be possible in prin-
ciple. The SAR implementation, however, handles and produces specifically
SPARQL queries exploiting specific features of sPARQL that are in fact not
present in relational database management systems out-of-the-box.

As comparison system we selected the REQUIEM rewriter [Pérez-Urbina,
Motik and Horrocks 2010]. REQUIEM produces a rather small set of union of

6 both are linked from
http://stefanbischof.at/sar
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7 the G optimization targets
ontologies beyond owL gL and will
therefore not influence the
rewritings [Pérez-Urbina, Horrocks
and Motik 2009]

Table 3.5: Number of triples for the different benchmarks

Benchmark TBox owL QL fragment ABox
LUBM (n) 306 246 n x 10k
UoBM (n) 977 539 n x 25k
EUGEN (n,m) 313 + m X 80 313 + m X 80 n X 10k
IMDB-MO 10 523 9 802 44 930 765
FLY 115136 75 452 321336
DBPEDIA+ 3130 3007 29730 164

conjunctive queries (for owL QL ontologies). REQUIEM provides three modes
of operation: N for naive, i.e. no optimizations, F for full, i.e. query subsump-
tion and dependency graph pruning or G for greedy, i.e. full plus unfolding
of non-recursive non-query clauses.” We adapted the REQUIEM source code
to be able to rewrite SPARQL queries and also produce SPARQL queries for the
benchmark queries.

We evaluate performance of query rewriting, the path materialization and
query evaluation, separately and in total.

Evaluation System We executed the query evaluation on a CentOS Linux
server with a 2.4GHz CPU of 8 cores and 64 GB of main memory and Java 7.

3.6.1 Benchmarks

Table 3.5 shows an overview of the different benchmark suites used in this
evaluation.

Although, older than a decade, LuBM [Guo, Z. Pan and Heflin 2005] is
still the standard benchmark often used when benchmarking owL reason-
ers. LUBM contains an ontology from the university domain, a data generator
for creating scaled datasets and 14 queries. LUBM contains a data generator
creating around 10k triples for each university.

UoBM [Ma et al. 2006] is based on LuBM and contains new ontologies and
an improved data generator.

EUGEN [Lutz et al. 2013] is an extension of LUBM aimed at benchmarking
oBDA systems. The benchmark contains ontologies with varying numbers of

9« 3«

subclasses for the classes “Department”, “Course”, “Student” and “Professor”.
Furthermore, it contains 6 queries which are longer (in the number of triple
patterns) and thus harder to evaluate than LuBM.

IMDB-MO [Rodriguez-Muro, Kontchakov and Zakharyaschev 2013] uses
the Movie Ontology (www.movieontology.org) and (the rDF version of) the
data from IMDb (www.imdb.com/interfaces).

FLY (http://www.virtualflybrain.org) is an ontology modelling the anatomy
of the fly. The ABox is rather small, but the TBox is complex.

DBPEDIA+ [Zhou et al. 2015] is a benchmark with DBPEDIA entities that

is combined with an ontology of the tourism domain. The queries are only


www.movieontology.org
www.imdb.com/interfaces
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3.6 EVALUATION 57

atomic queries, i.e. instance retrieval, one query for each class and one for
each property of the ontology.

We first created an owL QL version of each of the used ontologies. The
OWL QL extractor removes each owL QL violation that owLAPI [Horridge and
Bechhofer 2011] reports. This step is necessary because REQUIEM can also
rewrite ontology constructs not allowed in owL QL by using more complex
query languages.

3.6.2 SPARQL 1.1 engine

For the evaluation, we use the Blazegraph 1.5.3 triple store.® Blazegraph is
a graph database implementing interfaces for both sPARQL 1.1 and property
graphs. We use Blazegraph in triples mode, and thus disable features unneces-
sary for this evaluation such as named graphs, inferencing and full-text index.
Blazegraph includes the optional Runtime Query Optimizer® (RT0) which is
based on rox [Abdel Kader et al. 2009] to improve join order of high latency
queries by sampling different join orderings.

Another popular RDF triple store, OpenLink Virtuoso, showed unexpec-
ted behaviour when evaluating our sPARQL queries. Virtuoso is a relational
database system which also provides a SPARQL engine. RDF is mapped to rela-
tional tables and SPARQL queries are evaluated via SQL queries. Unfortunately,
the implementation of path patterns, especially transitivity, in Virtuoso (ver-
sion 07.20.3214) is not compliant to the SPARQL 1.1 specification:

1. Virtuoso cannot evaluate transitive path patterns with both subject and
object being unbound variables (depending on the query plan) and reports
only the following error: “transitive start not given”.

2. Virtuoso will not evaluate long queries at all. For many queries gener-
ated by our SAR implementation Virtuoso reports the following error: “The
SPARQL optimizer has failed to process the query with reasonable quality.
The resulting sQL query is abnormally long. Please paraphrase the sPARQL

query’.

Furthermore, Virtuoso forbids blank nodes as subjects in transitive path pat-
terns with the following message: “Subject of transitive triple pattern should
be variable or QName, not literal or blank node”. The same applies to blank
nodes as objects of transitive path patterns. Since the queries resulting from
the SAR rewriting do not contain blank nodes as subjects or objects of path
patterns we are not affected by this last limitation.

Let us illustrate these limitations using rewritings for the LuBM queries.
Limitation 1 makes evaluation of the SAR and Ol rewritings for the LuUBM quer-
ies 1, 3, 5, 10, 11 and 13 impossible to evaluate on Virtuoso. Limitation 2 makes
evaluation of the SAR and Ol rewritings for the LUBM queries 2, 4, 7, 8, 9 and
12 as well as the OMS rewritings for the LuBM queries 2 and 9 impossible to
evaluate on Virtuoso. Since for each query only one error is reported, it is not

8 http://www.blazegraph.com/

9 https://wiki.blazegraph.com/wiki/
index.php/QueryOptimization#
Runtime_Query_Optimizer
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10 original and rewritten queries
are available at
http://stefanbischof.at/sar

automatically clear which queries would suffer from both limitations.

Thus of the SAR and Ol rewritings, Virtuoso can only evaluate the LuBM
queries 6 and 14 (which both consist only of a single type triple pattern).
Therefore we assume that the rewriting of type triple patterns is not affected
by limitation 1 but that Virtuoso cannot process the arbitrary predicate re-
writing.

Next we evaluate SAR and the optimization variations, considering query

rewriting, path materialization and query answering.

3.6.3 Rewriting

First we evaluate the query rewriting step. We create 5 variations of all input
queries:*°

SAR plain schema-agnostic rewriting

R REQUIEM rewriting

Ol rewriting ignoring non-occurring axioms

OMS rewriting materializing all non-simple star path fragments
OMA rewriting materializing the complete paths expressions

Rewriting times  Since the SAR rewriting depends only on the query and not
the ontology, the rewriting times are dominated by parsing before, and query
serialization after rewriting. The internal rewriting step is, similar to the RE-
QUIEM implementation, only measured by the Java Ap1. The rewriting for
each of the queries of LUBM, IMDB-MO and EUGEN took less than 10 ms. While
rewriting for OMA and OMS is significantly faster than the rewriting for SAR
and Ol, all in all the rewriting times are negligible compared to SPARQL query
parsing times.

Used rDFs/owL properties In the benchmark ontologies we found one to
four ontology axiom properties we could ignore for the Ol optimization as
shown in Table 3.6. When considering only the owL QL fragment, we could
often ignore more axiom triples. Table 3.6 shows the owL properties ignored
by the Ol optimization for the different ontologies. When reduced to owL QL,
LUBM reduces to RDFS plus owl:inverseOf. DBPEDIA+ was the only benchmark
which did not include any kind of property equality or hierarchy.

REQUIEM rewriting Table 3.7 shows the results of REQUIEM, when rewriting
queries of the EUGEN benchmark. Independent of the optimization used (full,
greedy or naive) the rewriting takes much longer, and, not surprisingly, pro-
duces a large number of clauses. For the case of 10 or more subclasses, the
EUGEN benchmark is practically infeasible for REQUIEM because the result-
ing SPARQL queries are not parsable by Blazegraph or Virtuoso anymore due
to the high number of BGPs.
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Table 3.6: Properties that are ignored by Oy: o: property not used in owL QL fragment
ontology, e: property not even used in the original ontology; all ontologies con-
tained rdfs:domain, rdfs:range, rdfs:subClassOf, owl:onProperty and owl:inverseOf prop-
erties. Properties marked with v: occur also in the owL QL fragment of the ontology
and can therefore not be ignored by Ol. The lower section of the table lists properties
not used in the query rewriting but would only be used for consistency checking.

OWL QL property DBPEDIA+ EUGEN FLY IMDB-MO LUBM UOBM

rdfs:domain
rdfs:range
rdfs:subPropertyOf
rdfs:subClassOf
owl:onProperty
owl:inverseOf
owl:equivalentClass
owl:equivalentProperty
rdf:first

rdf:rest
owl:intersectionOf

SNENENENPIENEN
I A N NENENENEN
I NN NENENEN
NN N N NENENENEN
I I NENENENENEN
I N NENENENENEN

o L\ e

owl:disjointWith
owl:complementOf
owl:members
owl:someValuesFrom
owl:propertyDisjointWith

<\ o e o
o o o o
e \® 0O O

e \_® 0 O
e o o o
e \® @ O

Table 3.7: REQUIEM rewriting times for the three different optimization variants
“Full”, “Greedy” and “Naive” in milliseconds and number of conjunctive clauses in the
resulting UCQ for the EUGEN ontology with 10 subclasses for the classes “Department”,

» « %

“Course”, “Student” and “Professor”. Timeouts (>100 seconds) are denoted as

# of clauses/BGPs Rewriting [ms]

Query  # subclasses Full Greedy  Naive Full Greedy  Naive

1 0 123 123 150 76 64 50
10 11453 11453 11700 45988 33050 5185
2 0 320 320 2560 2591 1889 871
10 - - 45760 - - 75178
3 o 1760 1760 3472 4719 3533 1191
10 6720 6720 11712 55480 42 554 5317
4 o] 480 480 480 295 267 122
10 - - - - - -
5 0 90 90 6076 5809 2674 1847
10 - - - - - -
6 0 102 102 792 272 108 101

10 702 702 10062 15711 1375 3709
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Table 3.8: Number of triples generated by the OMA and OMS materializations

OMA OMA and OMS OoMS
Benchmark c:dom crng c:spi c:sc csp c:spo
DBPEDIA+ 669 584 2 1922 2 0
EUGEN 1 69 24 34 453 35 6
EUGEN 10 69 24 34 753 35 6
EUGEN 100 69 24 34 3453 35 6
FLY 8 143 7 8 timeout 41 35
IMDB-MO 1290 965 32 1797 32 5
LUBM 28 18 6 60 10 6
UOBM 36 24 17 151 24 16

Table 3.9: Materialization times of the OMA and OMS optimization in milliseconds

OMA OMA and OMS OMS
Benchmark c:dom crng c:spi c:sC csp c:spo
DBPEDIA+ 356 74 36 4714 62 23
EUGEN 1 178 98 45 5810 181 47
EUGEN 10 171 98 53 8611 182 49
EUGEN 100 165 75 48 14 724 189 54
FLY 145 83 32 timeout 121 50
IMDB-MO 302 177 34 31904 183 33
LUBM 60 60 44 388 88 43
UOBM 104 99 50 468 130 45

3.6.4 Materialization

We consider the materialization queries for OMA and OMS as given in Sec-
tion 3.5. The materializations were computed by two spPARQL Update queries,
one for the OMA case and one for OMS. See Table 3.8 for the number of triples
generated by the materialization queries and Table 3.9 for the time in milli-
seconds needed to compute the materialization on Blazegraph (Blazegraph
could compute most of the materializations compared to other engines).

The number of cache triples is similar to the number of ontology triples
(compare Table 3.8 with Table 3.5). Although the number of cache triples is
significant compared to the ontology, it is negligible compared to the size of
the whole graph including the ABox.

A majority of the cache triples result from the suBCLASSOF macro which
is also the longest path and the path which takes the longest to compute.

OMA wversus OMS The materialization for OMA produces on average approx.
50% more triples than the materialization of OMS. Thus our assumption of
the OMS materialization producing a smaller number of triples than the OMA
materialization was confirmed by the evaluated ontologies.

In the case of the FLY ontology, we could not materialize the suBCLASSOF
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macro because Blazegraph ran out of heap space even with 12 GB of memory.

3.6.5 Query Answering

Figure 3.1 shows how the answering performance of the different queries in
LUBM change when we increase the size of the RDF graph. We evaluated all 14
LUBM queries on 10 different RDF graphs with sizes from 1 to 20 universities
where the data of one university amounts to around 10k triples.

With the exception of query 1, OMA is never slower than OMS. For some
queries, like query 8 Ol was performing even better than OMS.

The rather linear behaviour of some of the optimization variants can be
explained by some LUBM queries always delivering the same results (from
University0) regardless of the number of universities in the current RDF graph.
The data generator creates every university disconnected from all other uni-
versities. The query result numbers are not affected by the number of univer-
sities for these queries.

Figure 3.2 shows the complete median query evaluation times (query re-
writing plus query evaluation on Blazegraph) for SAR, the optimisations Ol,
OMS and OMA as well as the three requiem variants RN, RG and RF for the
REQUIEM variants “naive”, “greedy” and “full”, respectively, in the different
columns. The rows represent the 6 different queries of the EUGEN benchmark.
Each query was evaluated for o and 10 subclasses of the classes “Department”,
“Course”, “Student” and “Professor” (see also Table 3.7 before). Furthermore
each query was evaluated three times using the standard settings and three
times using the runtime optimizer. Missing values for RN, RG and RF stem
either from timeouts in the rewriting step (see Table 3.7) or from stack over-
flow exceptions during query evaluation.

We can see in Figure 3.2 that for most queries REQUIEM could deliver
quick results for the case of 0 subclasses, but would run into problems in the
case of 10 subclasses; only RG and RF of query 6 would give results in the latter
case. This behaviour of returning errors in the case of 10 subclasses is plaus-
ible when considering Table 3.7: each of these queries contains thousands of
clauses/BGPs.

With the Blazegraph runtime optimizer enabled, the different SAR vari-
ants could evaluate most queries within the time limit. In a few cases Blaze-
graph performed better using the standard settings. With few exceptions, the
different SAR rewritings and optimisations could evaluate both cases: o sub-
classes and 10 subclasses. For 10 subclasses the SAR rewritings and optim-
isations could perform similarly (in query 6) or better (queries 1, 2, 3 and 5)
than any REQUIEM rewriting. The performance increase of the different SAR
optimisations,

Figure 3.2 shows clearly that an schema-agnostic rewriting using SPARQL
property paths can perform bettern than an ontology-dependent rewriting. In
particular this means, that for a wider or deeper class hierarchy, the path-
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Figure 3.1: LUBM query evaluation times in seconds for the 14 different queries (rows)
and optimization variants (columns) from 1 to 20 universities by Blazegraph; the black
discs: standard settings; gray triangles: runtime optimizer enable.
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Figure 3.2: Median EUGEN query evaluation times including rewriting times in seconds
for the 6 different queries (rows) and optimization variants/systems (columns) for o
and 10 subclasses for Department, Course, Student and Professor by Blazegraph; the

black discs: standard settings; gray triangles: runtime optimizer enabled.

based approach can deliver competitive performance.

3.6.6 Discussion

Query rewriting times are very fast due to the fact that the rewriting al-

gorithm is rather simple and independent of the ontology.

With the exception of the FLY ontology the path materialization was al-

ways feasible. The number of materialized triples is shown to be comparable

to the total number of ontology triples. OMS is shown to materialize signific-

antly fewer triples than OMA.

Evaluating unoptimized schema-agnostic queries is always slower than

evaluating the REQUIEM queries. In some cases a comparable performance

with REQUIEM can be achieved with our optimized query rewritings. Gener-

ally SAR is better suited for simple queries than for more complex ones.

The different optimizations, especially materialization, showed much bet-
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ter performance in many cases than the plain SAR rewriting. Ignoring unused
ontology triples Ol is usually better than unoptimized SAR. The materializa-
tion optimizations are usually better than Ol. We have not seen any cases
where the application of Ol alone would improve query performance signi-
ficantly. OMA, which needs more materialization triples, is usually better in
terms of query evaluation performance than OMS which is more economical
with respect to the number of materialised triples. The better query perform-
ance of OMA justifies the higher number of materialized triples.

Overall the evaluation showed that SAR rewritings can deliver competit-
ive performance in case of a higher number of subclasses.

IN suMMARY, schema-agnostic rewriting offers a novel reasoning technique
for the owL QL profile. The rewriting caters for the TBox and ABox being
stored in a single RDF graph, and essentially implements an owL QL reasoner
in a SPARQL 1.1 query. The queries generated by the schema-agnostic rewriter
are more general than oBDA queries in the sense that no new query rewriting
is necessary when the ontology is changed. While the resulting queries are
only larger by a constant factor—oBDA query rewritings suffer from an expo-
nential blowup in the worst case—the queries are still large. The evaluation
showed that unoptimized schema-agnostic rewriting has to pay a price for
this property when comparing it to oBDA approaches which generate quer-
ies exactly tailored to the ontology. However, with appropriate optimizations,
schema-agnostic rewriting could deliver query evaluation times comparable
to oBDA implementations.



RDF Attribute Equations

After presenting our approach for schema-agnostic ontological reasoning by
exploiting the SPARQL 1.1 feature “property paths”, we present in this chapter
our approach to reasoning with numerical values by exploiting a different
SPARQL 1.1 feature for assigning computed numerical values to a variable.
Parts of this chapter have been published as Bischof and Polleres [2013].

Section 4.1 gives a detailed motivation for this chapter. Section 4.2 defines

E
RDFS®

. . . . E
by simple equations. Section 4.3 defines SPARQL queries over DLy and

our ontology language DL which extends the RDFs fragment of DL-Lite
presents our query rewriting algorithm, along with a discussion of consider-
ations on soundness and completeness. Section 4.4 discusses alternative im-
plementation approaches of DLE .« with DL reasoners and rules. Section 4.5
describes a use case experiment and compares our approach to rule imple-
mentations.

4.1 Introduction

A wide range of literature has discussed the completion of data represented
in RDF with implicit information through ontologies, mainly through ontolo-
gical or taxonomic reasoning for classes and properties using RDFS and OWL.
However, a lot of implicit knowledge within real-world RDF data does not
fall into this category: a large amount of emerging RDF data is composed of
numerical attribute-value pairs assigned to resources. These attribute-value
pairs, called datatype properties in owL, can contain a lot of implicit inform-
ation, such as functional dependencies between numerical attributes which
are expressible in the form of simple mathematical equations. These depend-
encies include unit conversions (e.g. between degree Fahrenheit and degree
Celsius) or functional dependencies, such as the population density that can
be computed from the total population and the area of a populated spatial
entity. Such numerical dependencies between datatype properties are not us-
able for computations in standard ontology languages such as RDFS or OWL.
As we will see in Sections 4.4 and 4.5, rule-based approaches also fail to en-
code such dependencies in the general case.

Example 4.1. Sample rDF data about cities, integrated from sources such as
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1 http://dbpedia.org/
2 http://eurostat.linked-
statistics.org/

DBPEDIA' or Eurostat,” may contain data of various levels of completeness
and use numerical attributes based on different units like the following:
dbr:Jakarta dbo:tempHighC33.
dbr:New_York dbo:population 8244910 .
dbr:Vienna dbo:population 1714142 .
dbr:New_York dbo:tempHighF 84 .
dbr:New_York dbo:area_mile2 468.5 .

dbr:Vienna dbo:populationDensity 4134 .
dbr:Vienna dbo:area_km?2 414.6 .

Users familiar with sSPARQL might expect to be able to ask for the population
density, or for places with temperatures over 9o°F with SPARQL queries like
the following:

SELECT ?C ?P WHERE { ?C dbo:populationDensity ?P '} or
SELECT ?C WHERE { ?C dbo:tempHighF ?TempF FILTER(?TempF >90) }

However, answers following implicitly from mathematical knowledge such
as the following equations, would not be returned by those queries:

dbo:tempHighC = (dbo:tempHighF — 32) - 5/9
dbo:populationDensity = dbo:population/dbo:area_km2 ¢

One might ask why such equations cannot be directly added to the termin-
ological knowledge modelled in ontologies? We aim to show that it actually
can; further, we present an approach to extend the inference machinery for
SPARQL query answering under ontologies to cater for such equations. In-
spired by query rewriting algorithms for query answering over DL-Lite (see
Section 2.3.1), we show how similar ideas can be deployed to extend a DL-Lite
fragment covering the core of RDFs with so-called equation axioms.

We focus on query rewriting techniques rather than e.g. rule-based ap-
proaches such as swrL [Horrocks, Patel-Schneider et al. 2004], where the
equations from Example 4.1 could be encoded as follows, given respective
arithmetic built-in support in a SWRL reasoner:

dbo:tempHighC(X, C) < dbo:tempHighF(X, F),C = (F—32)-5/9 (4.1)
dbo:populationDensity(X, PD) < popoulation(X, P), area_km2(X, A),PD = P/A (4.2)

Where X, C, F, PD, P and A are variables. However, note that these rules are not
sufficient to get the desired query results: (i) rule (4.1) is in the “wrong direc-
tion” to give results to the query in Example 4.1; that is, we would need differ-
ent variants of the rule for converting from dbo:tempHighC to dbo:tempHighF
and vice versa, and (ii) the above rules are not pr-safe [Motik, Ulrike Sat-
tler and Studer 2005], i.e., it does not suffice to bind values only to explicitly
named individuals, as we want to compute new values, which potentially
leads to termination problems in rule-based approaches (as we demonstrate
in Section 4.5). Our approach addresses both these points in that: (i) equations
are added as first class citizens to the ontology language, where variants are
considered directly, and (ii) the presented query rewriting algorithm always
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terminates and returns finite answers; we will also discuss reasonable com-
pleteness criteria.

4.2 Extending Description Logics by Equations

We herein define a simple, restricted form of arithmetic equations and extend
a lightweight fragment of pr-Lite by such equations.

Definition 4.1. Let {xy, ..., x,} be a set of variables. A simple equation E is an
algebraic equation of the form x; = f(xg,...,x,) such that f(x;,...,x,) is
an arithmetic expression over numerical constants and variables x5, . . ., x5,
where f uses the elementary algebraic operators +, —, -, / and contains each x;
exactly once. Moreover, by vars(E) we denote the set of variables {xy,...,x,}
appearing in a simple equation E.

That is, we allow non-polynomials for f—since divisions are permitted—but
do not allow exponents (different from +1) for any variable. Such equations
can be solved symbolically for each x; by only applying elementary trans-
formations: i.e., for each x;, where 2 < i < n, an equivalent equation E’ and
function f’ of the form x; = f’(xy, ..., X1, Xi+1, - - - , Xn) are uniquely determ-
ined. Note that since each variable occurs only once, the standard procedure
for solving single variable equations can be used. In analogy to the notation
used by computer algebra systems (such as Mathematica or Maxima) we write
solve(x; = f(x2,...,xn),x;) to denote E’ above.

A . E
4.2.1  The Description Logic DLy

When we talk about Description Logics in this chapter, we consider the RDFs
fragment of pi-Lite which we extend by simple (attribute) equations. We
call this fragment DLEDFS, as it is just expressive enough to capture (the pL
fragment of) the RDFs semantics [Hayes 2004] extended with equations. In

contrast to DL-Lites introduced by Poggi et al. [2008], DLE . leaves out

RDFS
property functionality, as well as class and property negation and we restrict
ourselves to a single value domain for attributes, the set of rational numbers
Q3

Compared to DL-Lite introduced in Section 2.3 we distinguish properties
between object properties P, with an 1r1 i € I as an RDF triple object, and

attributes U with a number as the RDF triple object.

Definition 4.2. Let A be an atomic class name, P be an atomic property name,
and U be an atomic attribute name. The sets of atomic class names, property
names and attribute names are disjoint. Then a DLEDFS class expression C is
definedasC :=A | 3P | 3P~ | JU.

Definition 4.3. A DLEDFS knowledge base (kB) K = (7, A) consists of a finite

3 Note that since we only consider
this single type of attribute, we
also do not introduce value-domain
expressions of Poggi et al. [2008].
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4 leaving out subtleties such as e.g.

those arising from non-standard
use [de Bruijn and Heymans 2007]
of the rRDF vocabulary

5 DL-Litegpps allows axioms of the
form Py C P}, which we will not
allow, since these in fact are
beyond the basic expressivity of
RDFS.

set of terminological axioms 7~ (TBox) and assertions A (ABox). For A, P;, P,,
Ui, U; and C denoting atomic classes, object properties, attributes and class
expressions, respectively, 7 can contain:

CCA (class inclusion axiom)
PCP (property inclusion axiom)
UL, (attribute inclusion axiom)
Uy = f(Uy,...,Uyp) (equation axiom)

For a,b e Iand q € Q, an ABox is a set of class assertions A(a), property
assertions P(a, b) and attribute assertions U(a, q). Finally, by I (and 14,1p, Iy,
respectively), we denote the (finite) sets of constants from I appearing in K

(as classes, properties and attributes, respectively).

Table 2.1 show the correspondence between the DL syntax and the essential
RDFS terminological vocabulary. For attributes, similar to object properties,
we allow rdfs:subPropertyOf and ABox assertions. We use datatype literals of
the type owl:rational from owL 2 for rational numbers (which however sub-
sumes datatypes such as xsd:integer and xsd:decimal more commonly used
in real-world RDF data). We can encode equation axioms in RDF by means
of a new property definedByEquation and write the respective arithmetic ex-
pressions f(Uy,...,U,) as plain literals instead of breaking down the arith-
metic expressions into RDF triples. While Sections 4.6 and 6.5 introduce re-
lated equation serialization alternatives, we follow the “RDFs scheme” of us-
ing a single triple for each axiom. This restriction allows simpler handling
of the equations with a spArRQL-based implementation. An equation U, =
f(Uy,...,Uy) is represented in RDF as U, definedByEquation “f(Uy,...,U,)”. In
Chapter 6 we will use a specific datatype for such equation literals to expli-
citly type equations and distinguish them from other string literals.

As mentioned before in the context of Definition 4.1, we consider equa-
tions that result from just applying elementary algebraic transformations as
equivalent. In order to define the semantics of equation axioms accordingly,
we will make use of the following definition.

Definition 4.4. Let E: Uy = f(Uy, ..., U,) be an equation axiom then, for any
U; with 0 < i < n, we call the equation axiom resulting from solve(E, U;) the

U;-variant of E.

Note that the pr defined herein encompasses the basic expressivity of RDFs
(rdfs:subPropertyOf, rdfs:subClassOf, rdfs:domain and rdfs:range)* and in fact,
rather than talking about a restriction of DL-Lite 4, we could also talk about
an extension of DL-Literpps [Arenas et al. 2012].5

Extending the RDFs fragment of Definition 2.14 we now define the se-

. E
mantics of DLgppg-

Definition 4.5 (DLEDFS model). An interpretation J satisfies an axiom of the

form
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ccAifct c Af

P cPifPl cpPf

U CELifUf cUf

= Up=f(U,,...,Uy) if

Va1, a( AT (e, 1) € UF) A defined(F(U /1, - - Un/yn)
= (x,eval(f(Ui/y1, .., Un/yn)) € Uy

where, by eval(f(Ui/y,...,U,/yn)) we denote the actual value in Q from
evaluating the arithmetic expression f(Uj, . . ., U,) after substituting each U;
with y;, and by defined(f(Uy/y1, - - -, Uy /yn)) we denote that this value is actu-
ally defined (i.e., does not contain a division by zero). Analogously, I satisfies
an ABox assertion of the form

= C(a)ifal e C?
= P(a,b) if (a?,b%) € P1
= U(a,q) if (a’,q) e U

Finally, an interpretation 7 is called a model of a kB K = (7, A), written
I |= K, if T satisfies all (property, attribute and class) inclusion axioms in 7,
all variants of equation axioms in 77, and all assertions in A.

. . . . . . E
Finally, we define conjunctive queries with assignments over DLy .. by ex-
tending Definition 2.15 with assignments.

Definition 4.6. A conjunctive query with assignments (CQA) is an expression
of the form
q(*) — Iy.¢(x.y)

where X is a sequence of variables called distinguished variables, y is a se-
quence of variables called non-distinguished variables, and ¢ is a conjunction
of class, property or attribute atoms of the forms C(x), P(x, y), and U(x, z),
respectively, and assignments of the form xy = f(xy,...,x,) representing
simple equations, where x, y are constant symbols from I or variables (distin-
guished or non-distinguished), z is either a value from Q or a variable and
the x; are variables such that for all i > 1, x; appears in an atom of the form
Ul(x, x;) within ¢. A set of queries with the same head ¢(X) is a union of con-
junctive queries with assignments (UCQA).

For an interpretation 7, we denote by g’ the set of tuples @ of domain ele-
ments and elements of Q which makes ¢ true,’ when 4 is assigned to distin-
guished variables X in gq.

Definition 4.7. For a CQA g and a xB K the answer to q over K is the set
ans(q, K) consisting of tuples @ of constants from Iy U Q such that aM e g™
for every model M of the xB K.

Note that, as opposed to most DL-Lite variants (such as [Calvanese, De Giac-
omo et al. 2007]), ans(g, K) in our setting is not necessarily finite, as shown
by the following example.

6 We mean true in the sense of
first-order logic, where we assume
that the interpretation of
arithmetic expressions is built-in
with the usual semantics for
arithmetic over the rational
numbers Q, and that equality “=” is
false for expressions that yield
division by zero on the right hand
side.
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7 We note though, that soundness
of our query rewriting approach
would not be affected if we allowed
arbitrary BGPs.

8 With DLEDFS we cover only a
weak DL, but we expect that our
extension is applicable to more
complex DLs such as the one
mentioned by Calvanese, De
Giacomo et al. [2007], which we
leave for future work.

Example 4.2. Let K; = (71, Ay) with A; = uy(0y,1), uz(01,1), us(01,1), 71 =
{e: u; = uy + us} and g(x) < uy(01,x) then ans(q, K) contains each of the
natural numbers > 1. o
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allow restricted BGPs in SPARQL queries.” Similar to the CQ-patterns defined

In order to remain compatible with the notion of CQs in DL we only
in Section 3.4, a BGP p must not contain any OwL, RDF or RDFS IRIs other

than rdf:type in property position.

E
RDFS

the restrictions we have imposed on BGPs, any BGP P can trivially be mapped
to a (non-distinguished-variable-free) CQ of the form gp: g(vars(P)) « ¢(P),
where vars(P) is the set of variables occurring in P.

Following the correspondence of the DL syntax, the RDF syntax and

Example 4.3. Within the SPARQL query

SELECT ?XWHERE {{ :01 :ul ?X } FILTER (?X > 1) }

the BGP {:01:u17X} corresponds to the CQ from Example 4.2. o

FILTERs and other complex patterns are evaluated on top of BGP matching:

E
RDF

representation of a DLEDFS KB K. Then, the solutions of a BGp P for G, de-
noted as [P] = ans(gp, K).

Definition 4.8 (Basic graph pattern matching for DLy ). Let G be an RDF

Note that here we slightly abused the notation using ans(gp, K) synonym-
ous for what would be more precisely “the set of SPARQL variable mappings

corresponding to ans(qp, K)”.

; E
Adapting PerfectRef to DLy 5

Next, we extend the PerfectRef algorithm, given in Algorithm 2.1, which re-
formulates a conjunctive query to directly encode needed TBox assertions in
the query. The algorithm PerfectRefE in Algorithm 4.1 extends the original
PerfectRef in Algorithm 2.1 by equation axioms and conjunctive queries con-
taining assignments, as defined before, following the idea of query rewriting
by “expanding” a conjunctive query Q to a union of conjunctive queries with
assignments Q, that is translated to a regular SPARQL 1.1 query.

PerfectRefE first expands the atoms using inclusion axioms (lines 6-8)
as in the original PerfectRef algorithm. Here, a DLﬁDFS inclusion axiom I is
applicable to a query atom g if the function grE (Algorithm 4.2) is defined.?
The only addition to Algorithm 4.2, when compared to Algorithm 2.2, is the
“adornment” adn(g) of attribute atoms which we explain next, when turning

to the expansion of equation axioms.
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Algorithm 4.1: PerfectRefE(g, 7)

Input: Conjunctive query g, TBox 7~
Output: Union of conjunctive queries with assignments

P:={q}
repeat
P =P
foreach q € P’ do
foreach g in q do // expansion
foreach inclusion axiom I in T do
if I is applicable to g then
| P:=Pu{qlg/grE(g. D]}
foreach equation axiom E in T do
if g = U249)(x, y) is an (adorned) attribute atom and
vars(E) N adn(g) = @ then
‘ P:=PU {q[g/expand(g, E)]}
until P’ = P
return P

Algorithm 4.2: grE(g, I)

if g = A(x) then
if = A; C A then return A;(x)
else if I = 3P C A then return P(x,_)
else if I = 3P~ C A then return P(_, x)
else if I = 3U C A then return U(x, )
else if g = P(x,y) and I = P; C P then return P;(x, y)

else if g = U™ (x, y) and I = U; C U then return Uladn(g )(x, y)

The actually new part of PerfectRefE that reformulates attribute atoms in
terms of equation axioms is in lines 9—11. In order to avoid infinite expansion
of equation axioms during the rewriting, the algorithm “adorns” attribute
atoms in a conjunctive query by a set of attribute names. That is, given an
attribute atom U(x, z) and a set of attribute names {Uj, ..., U} we call g =
UUs---Uk(x, z) an adorned attribute atom and write adn(q) = {Ui,..., Ui}
to denote the set of adornments. For an unadorned g = U(x, z), obviously
adn(g) = 0. Accordingly, we call an adorned conjunctive query a CQ where
adorned attribute atoms are allowed.

For g = U™9)(x,y)and E’: U = f(U,,...,U,) being the U-variant of E
the function expand(g, E) returns the following CQA:

Uladn(g)U{U}(x, YOA .. A Usdn(g)U{U}(x, Y)ANY=FO,--es¥n)
where y, . .., y, are fresh variables. Here, the condition vars(E) Nadn(g) = 0
ensures that U is not “re-used” during expansion to compute its own value
recursively. The adornment thus prohibits infinite recursion.
We note that we leave out the reduction step of the original PerfectRef
algorithm from Algorithm 2.1, since it does not lead to any additional applic-

71
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E
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may extend PerfectRefE to more expressive DLs as part of future work, this

ability of inclusion axioms in the restricted Description Logic DL As we
step may need to be re-introduced accordingly.

Finally, just as we previously defined how to translate a SPARQL BGP P
to a conjunctive query, we translate the result of PerfectRefE(gp, 77) back to
SPARQL by means of a recursive translation function tr(PerfectRefE(gp, 7)).
That is, for PerfectRefE(qp, 7)) = {q1,...qm} and each g; being of the form
A;ZO atomj, we define tr as follows:

tr({q1, - - - gm}) = {tr(q1) }JUNION . . . UNION{tr(g,)}

ki
tr(/\ atom;) = tr(atomy) . - - - . tr(atomy,)
j=0

tr(A(x)) = tr(x) rdf:itype A

t(P(x, ) = tr(x) P tr(y)

tr(U(x,y)) = tr(x) U tr(y)

tr(y = f1, - -, yn)) = BIND(f(tr(y1), . . ., tr(yn)) AS tr(y))
tr(x) =x, forx e V

tr(x) = x, forx €I

tr(x) = "x"Mowl:rational, for x € Q

The following proposition follows from the results in Calvanese, De Giac-
omo et al. [2007], since PerfectRefE is a restriction of the original PerfectRef
algorithm as long as no equation axioms are allowed, and any DLEDFS KB is
consistent.

Proposition 4.1. Let g be a conjunctive query without assignments and K =
(7, A) be a DLEDFS KB without equation axioms. Then PerfectRefE is sound
and complete, i.e.

ans(q, K) = ans(PerfectRefE(q, 7), (0, A))
The following corollary follows similarly.

Corollary 4.1. Let q be a conjunctive query without assignments and with-
out attribute axioms and let K = (7, A) be an arbitrary DLIEDFS KkB. Then
PerfectRefE is sound and complete.

As for arbitrary DLEDFS knowledge bases, let us return to Example 4.2.

Example 4.4. Given the knowledge base K; = (71, A;) and query g from
Example 4.2. The query PerfectRefE(g, 7°) is

{ q(x) «— wi(01, x), q(x)  uy" (01, x2), u5" (01, x3), X = X + x3}

which only has the certain answers x = 1and x = 2, showing that PerfectRefE
is incomplete in general. As a variant of %, lets consider K, = (71, A;) with
the modified ABox Ay = {uy(o1, 2), uz(01, 1), uz(o1, 1)}. In this case, PerfectRefE
delivers complete results for K, i.e.,

ans(q, K) = ans(PerfectRefE(q, 77), (0, A3))
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with the single certain answer x = 2. Finally, the rewritten version of the
SPARQL query in Example 4.3 is
SELECT X WHERE {{ { :01 :ul ?X } UNION

{ 01 :u22X2 . :0l :u3 2X3 . BIND(?X2+?X3AS?X) } }
FILTER ( 2X>1) } ¢

In order to capture a class of DLEDFS KBS, where completeness can be retained,
we will use the following definition.

Definition 4.9. An ABox A is data-coherent with 7, if there is no pair of
ground atoms U(x, d”), U(x, d) with d # d’ entailed by K = (7, A)

The following result is obvious.

Lemma 4.1. Whenever A is data-coherent with 7, any conjunctive query q
has a finite number of certain answers.

Proof. Assume that the certain answers to g are infinite. From Corollary 4.1
we can conclude that infiniteness can only stem from distinguished variables
that occur as attribute value y in some attribute atom U(x, y) in the query.
However, that would in turn mean that there is at least one x with an infinite
set of findings for y, which contradicts the assumption of data-coherence. O

The following stronger result (which for our particular use case of BGp match-
ing in SPARQL we only consider for non-distinguished-variable-free conjunct-
ive queries) states that data-coherence in fact implies completeness.

Theorem 4.1. If A is data-coherent with 7, the for any non-distinguished-
variable-free conjunctive query q PerfectRefE is sound and complete.

Proof. The idea here is that whenever A is data-coherent with 7 for any fixed
x, any certain value y for U(x, y) will be returned by PerfectRefE: assum-
ing the contrary, following a shortest derivation chain U(x, y) can be either:
(i) be derived by only atoms U;(x, y;) such that any U; is different from U, in
which case this chain would have been “expanded” by PerfectRefE, or (ii) by
a derivation chain that involves an instance of U(x, z). Assuming now that
z # y would violate the assumption of data-coherence, whereas if z = y then
U(x, y) was already proven by a shorter derivation chain. O

In what follows, we will define a fragment of DLg . KBs where data-coherence
can be checked efficiently. First, we note that a data-coherent ABox alone,
such as for instance in K, in Example 4.4 above, is in general not a guaran-
tee for data-coherence. To show this, let us consider the following additional
example.

Example 4.5. Consider the TBox 7; = {e: uy = uz + 1,u; C u;} As can be

seen, any ABox containing an attribute assertion for either u or u, is data-
incoherent with 75. o
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The example also shows that only considering equation axioms is not suffi-
cient to decide data-coherence, as we also need to consider attribute inclusion
axioms. Following this intuition, we define a dependency graph over 7 as fol-
lows.

Definition 4.10. A TBox dependency graph G = (N, E) is constructed from
nodes for each attribute and each equation axiom N = {e | e is an equation
axiom in 7 } UIy. There exist edges (e, v) and (v, e) between every equation e
and its variables v € vars(e). Furthermore there exists an edge (u, v) for each
attribute inclusion axiom u E v. If G contains no (simple) cycle with length
greater than 2, then we call 7 attribute-acyclic.

Example 4.6. Given 77, 7; from Examples 4.2 and 4.5, let further 75 = {e;: g =
Upt+l,es:us =w+1}, g ={e;: uy =us+1l,ex: uy =u;—1},and 75 = {ey: u; =
Up — U3, €3 Uy = Use3: Uy = Uz} Tg = {e: u; = uy —us,uy C up uy C us} then
the resp. dependency graphs are as follows where the graphs for 7,-7; are
cyclic.

" A Eed-eg @@@’)
- O-OF— " :”
Notably, since e, is a variant of e; in 74, 74 is actually equivalent to an acyc-
lic TBox (removing either e; or ey), whereas this is not the case for 75. More
refined notions of acyclicity, which we leave for future work, might capture
this difference. Furthermore, there is a subtle difference between 75 and 5.
In 75, when e;—e; are viewed as an equation system, partially solving this sys-
tem would result in the new equation u; = 0, independent of the ABox. Since
PerfectRefE does not solve any equation systems (but only instantiates equa-
tions with values from the ABox), it would not detect this. On the contrary,
in 7, only when a concrete “witness” for uy is available in the ABox, this con-
strains the value of u; to be 0, which could be correctly detected by means of
PerfectRefE: for attribute-acyclic TBoxes, data-coherence (finitely) depends
on the ABox, and we can define a procedure to check data-coherence (and
thus completeness) by means of PerfectRefE itself.

Proposition 4.2. Let 7 be an attribute-acyclic TBox, and Iy = {uy,...,um}.

Then the following SPARQL query Qcheck

ASK {{tr(PerfectRefE(gp,, 7)) FILTER(?Y |= ?Z)}
UNION ... UNION
{tr(PerfectRefE(qp,,, 7)) FILTER(?Y = ?Z)}}

where P; = {?X u; 7Y . ?2X u; ?Z}, determines data-coherence in the following
sense: an ABox A is data-coherent with T if Q7. returns “false”,
check

The idea here is that since 7™ is attribute-acyclic, and due to the restriction
that each variable occurs at most once in simple equations, finite witnesses
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for data-incoherences can be acyclically derived from the ABox, and thus
would be revealed by PerfectRefE.?

4.4 Implementation Approaches

Our approach relies on standard SPARQL 1.1 queries and runs on top of any
off-the-shelf sPARQL 1.1 implementation by first extracting the TBox and then
rewriting BGPs in each query according to the method described in the pre-
vious section. In order to compare this rewriting to alternative approaches,
we have looked into DL reasoners as well as rule-based reasoners, namely,
Racer [Haarslev and Moller 2001], Pellet [Sirin et al. 2007] and Jena Rules
[Apache Jena 2017(b)]. We discuss the feasibility of using each of these for
query answering under DLE . separately.

Racer [Haarslev and Moller 2001] does not provide a sPARQL interface but
uses its own functional query language new Racer Query Language (nRQL).
The system allows for modelling some forms of equation axioms, cf. mod-
elling unit conversions in Haarslev and Moller [2003], but Racer only uses
these for satisfiability testing and not for query answering. This is orthogonal
to our approach, as due to the lack of negation there is no inconsistency in
DLpys:

sWRL [Horrocks and Patel-Schneider 2004; Horrocks, Patel-Schneider et
al. 2004] implementations like Pellet [Sirin et al. 2007] handle D1-safe rules
[Motik, Ulrike Sattler and Studer 2005], that is, rules where each variable ap-
pears in at least one non-pL-Atom. We discussed potential modelling of equa-
tion axioms as SWRL rules in Example 4.1: as previously noted, rules for each
variant of each equation axiom must be added to enable query answering for
DLypps-
over certain data-coherent ABoxes were answered correctly; despite—to our

Taking this approach, experiments with Pellet showed that queries

reading—rules like (4.1) and (4.2) are not DL-safe in the strict sense. How-
ever, we still experienced termination problems when using the data and
query in Example 4.1, since strictly speaking, the data for dbr:Vienna is not
data-coherent (due to rounding errors). Due to the finite nature of our re-
writing, our approach always terminates and is thus sufficiently robust for
such—strictly speaking—incoherent data; Section 4.5 will give more details.
Jena'® provides rule-based inference, on top of its native RDF storage
backend TDB, in a proprietary rule language with built-in predicates. Sim-
ilar to swWRL, we have to encode all variants of equation axioms. Jena allows
the execution of rules in backward- and forward-chaining mode, where back-
ward execution does not terminate for our rules due to the recursive nature of
rules encoding all variants for each equation; this limitation includes empty
ABoxes. Forward execution suffers from similar non-termination problems
as mentioned in Example 4.1 for incoherent data, whereas forward execution
for data-coherent ABoxes might terminate—given no significant rounding er-

9 As an aside, it suffices to apply
the query from Proposition 4.2 to
only those attributes u; appearing
in a particular CQ q for determining
completeness of the results in this

query.

10 http://jena.apache.org/
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11 http://citydata.wu.ac.at/KPI-
DataPipeline/

rors occur during query evaluation. Jena offers hybrid rule-based reasoning
where pure RDFs inferencing is executed in a backward-chaining manner,
but can still be combined with forward rules. This approach was incomplete
in our experiments, because property inclusion axioms did not “trigger” the
forward rules modelling equation axioms correctly.

4.5 A Practical Use Case and Experiments

For a prototypical application to compare and compute base indicators of
cities—required for studies like Siemens’ Green City Index [The Economist
Intelligence Unit 2012] as already discussed in Section 1.1—we collected open
data about cities from several sources (e.g. DBPEDIA, Eurostat) over several
years. When integrating these sources into a joint RDF dataset, various prob-
lems such as incoherences, incomplete data or incomparable units along the
lines of the extract in Example 4.1 occurred. Most indicators (such as demo-
graphy, economy, or climate data) comprise numeric values, where functional
dependencies modelled as equation axioms are exploitable to arrive at more
complete data from the sparse raw values.

For an initial experiment to test the feasibility of the query answering
approach presented in this chapter, we assembled a dataset containing an
ABox of 254 081 triples for a total of 3162 city contexts (i.e., when we speak
of a “city”, we actually mean one particular city in a particular year) along
with the following (attribute-acyclic) TBox:

dbo:tempHighC = (dbo:tempHighF — 32) - 5/9 (4.3)
dbo:populationRateMale = dbo:populationMale/dbo:population (4.4)
dbo:populationRateFemale = dbo:populationFemale/dbo:population (4.5)
dbo:area_km2 = dbo:area_m2/1000000 (4.6)
dbo:area_km2 = dbo:area_mile2/2.589988110336 (4.7)
dbo:populationDensity = dbo:population/dbo:area_km2 (4.8)

dbo:City C dbo:Location
foaf:name C rdfs:label

dbo:name C rdfs:label

Our prototype system, an early predecessor of the Open City Data Pipe-
line presented later in Chapter 5, consists of a triple store (Jena TDB), several
scripts to crawl, transform and integrate the data from different sources and
a simple Web UI to browse the dataset (see Bischof, Polleres and Sperl [2013]
for more details on this early prototype).” The RDF attribute equation re-
writer is a separate application, implemented in Java, which takes as inputs a
SPARQL query and an ontology, and produces a SPARQL query as output. We
use the Jena API to manipulate SPARQL queries and rely on Maxima for the
implementation of the solve function.
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4.5 A PRACTICAL USE CASE AND EXPERIMENTS

Next, we serialise the RDF attribute equations given in Equations (4.3)
to (4.8) to their RDF representation:

dbo:tempHighC definedByEquation "(dbo:tempHighF)—32*5/9" .

dbo:populationRateMale definedByEquation "dbo:populationMale/dbo:population” .

dbo:populationRateFemale definedByEquation "dbo:populationFemale/dbo:population” .

dbo:area_km2 definedByEquation "dbo:area_m2/1000000" .

dbo:area_km2 definedByEquation "dbo:area_mile2/2.589988110336" .
dbo:populationDensity definedByEquation "dbo:population/dbo:area_km2" .

Moreover, we use the following four queries for our experiments:

Q1 Return the population density of all cities:

SELECT ?C?P
WHERE { ?C rdf :type :City . ?C dbo:populationDensity ?P . }

Q2 Select cities with a maximum annual temperature above 90°F:

SELECT ?C
WHERE { ?C rdf :type dbo:City . ?C rdfs:label 7L .
?C dbo:tempHighF ?P. FILTER(?F > 90) }

Q3 Select locations with a label that starts with “W” and a population over
1 million:
SELECT 7C
WHERE { ?C rdf:type dbo:Location . ?C rdfs:label 7L .

?C dbo:population ?P .
FILTER(?P > 1000000 && STRSTARTS(?L,"W")) }

Q4 Select places with a higher female than male population rate:

SELECT ?7C
WHERE { ?C dbo:populationRateFemale ?F .
?C dbo:populationRateMale ?M . FILTER( ?F > ?M) }

Experimental results are summarized in Table 4.1. For the reasons given in
Section 4.4, we compare our approach only to Jena Rules. Experiments were
run on the dataset using Jena and ARQ 2.9.2 (with an in-memory RDF graph).
We first encoded the essential RDFs rules plus all variants of equation axioms
in a straightforward manner as forward rules (“Jena naive”), leading to the
expected non-termination problem with data-incoherent data (“Full ABox 7).
Since the (forward) materialization did not terminate, evaluating query re-
sponse behaviour was impossible. To circumvent this problem, we created a

Table 4.1: Response times of queries Q1-Q4 in seconds

Data-coherent ABox Full ABox
# Our System  Jenanaive  Jena noValue Our System  Jena noValue
(0} 6.5 >600 30.7 7.3 30.1
Q2 5.8 >600 32.7 5.7 31.3
Q3 7.8 >600 32.5 8.2 29.0

Q4 6.9 >600 34.3 7.9 32.4
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data-coherent sample of our dataset ABox (253 114 triples) by removing tri-
ples leading to possible incoherences, however still reaching a timeout of
1omin for all 4 queries. As an alternative approach, we used Jena’s negation-
as-failure built-in noValue which returns sound but incomplete results, in that
it fires a rule only if no value exists for a certain attribute (on the inferences
so far or in the data); similar to our approach, this returns complete results
for data-coherent datasets and always terminates. As an example of encoding
the variants of an axiom in Jena Rules, we show the encoding of equation (4.8)
(which is identical to the naive encoding except the noValue predicates). Pos-
sible divisions by 0 for an arbitrary division a/b, which we do not need to care
about in our SPARQL rewriting, since BIND filters them out (see Section 2.2),
are caught by notEqual(b, 0) predicates.
[ (?city :area ?ar) (?city :population ?p) notEqual(?ar, 0)
quotient(?p, ?ar, ?pd) noValue(?city, :populationDensity)
—> (? city :populationDensity ?d)]
[ (?city :area ?ar) (?city :populationDensity ?pd)
product(?ar, ?pd, ?p) noValue(?city, :population)
—> (?city :population ?p)]
[ (?city :populationDensity ?pd) (? city :population ?p)
notEqual(?pd, 0) quotient(?p, ?pd, ?ar) noValue(?city, :area)
—> (?city :area ?ar)]

Overall, while this experiment was primarily a feasibility study of our
query-rewriting approach, the results as shown in Table 4.1 are promising:
we clearly outperform the only rule-based approach we could compare to.

4.6 Related Work

owL ontologies for measurements and units such as QuDT [Ralph Hodgson
2011] and om [Rijgersberg, Assem and Top 2013] provide means to describe
units and—to a certain extent—model conversion between these units, though
without the concrete machinery to execute these conversions in terms of ar-
bitrary sPARQL queries. Our approach is orthogonal to these efforts in that:
(i) it provides not only a modelling tool for unit conversions, but integrates
attribute equations as axioms in the ontology language and (ii) allows for a
wider range of use cases, beyond conversions between pairs of units only. It

would be interesting to investigate whether ontologies like QUDT and om can

E
RDF.

While there exists an extension of owL with linear equations [Parsia and

be mapped to the framework of DLy . or extensions thereof.
Uli Sattler 2012], it suffers from the same limitations as Racer’s nrQL: the
computed values are not available for instance retrieval or querying.

IN SUMMARY, RDF attribute equations provide an ontology language to rep-
resent dependencies between numerical indicators and a backward-chaining
reasoning approach to compute implicit numerical attributes.



4.6 RELATED WORK

In the next Part we will refine this idea in our main use case and explore
more approaches to enrich numerical data with different methods. In particu-
lar we develop a forward-chaining approach in Chapter 6, with a termination
condition similar to the way adornments were used to ensure termination for
reasoning with RDF attribute equations in this chapter. To complement the
symbolic equations approach, we use statistical methods to further enrich
our datasets in Chapter 7. But first, in Chapter 5, we introduce our main use
case of collecting and enriching statistical open city data.
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APPLICATION






Open City Data Pipeline

In this chapter we introduce the practical motivation for this thesis. We de-
scribe the consumed datasets and explain how statistical data is modelled
in our system, the Open City Data Pipeline (ocDP). Parts of this chapter have
been published as Bischof, Harth et al. [2017] and Bischof, Martin et al. [2015a].

Section 5.1 introduces our main use case and, to some extent, details prac-
tical motivation for this thesis. Section 5.2 gives an overview of the Open
City Data Pipeline architecture, including a description of the data sources
and a description of how the resulting dataset is made available in a reusable
and sustainable manner via a web interface, a Linked Data interface and a
public SPARQL endpoint. Section 5.3 explain data modelling assumptions and
decisions necessary for the following chapters.

5.1 Introduction

The public sector collects large amounts of statistical data. For example, the
United Nations Statistics Division provides regularly updated statistics about
the economy, demographics and social indicators, environment and energy,
and gender on a global level.' The statistical office of the European Commis-
sion, Eurostat, provides statistical data mainly about Eu member countries.
Some of the data in Eurostat has been aggregated from the statistical offices
of the EU member countries. Several larger cities provide data in on their
own open data portals, e.g., Amsterdam,? Berlin,* London® or Vienna.’ In-
creasingly, such data can be downloaded free of charge and used under open
licences.

Open data from these sources can benefit public administrations, citizens
and enterprises. The public administrations can use the data for decision sup-
port and back policy decisions in a transparent manner. Citizens can be better
informed about government decisions, as publicly available data can help to
raise awareness and underpin public discussions. Finally, companies could
develop new business models and offer tailored solutions to their custom-
ers based on such open data. As an example for making use of such data,
consider Siemens’ Green City Index (Gc1) [The Economist Intelligence Unit
2012], which assesses and compares the environmental performance of cities.
In order to compute the kp1s used to rank cities’ sustainability, the cc1 used

-
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http://unstats.un.org/unsd/

http://ec.europa.eu/eurostat/

http://data.amsterdam.nl/
http://daten.berlin.de/
http://data.london.gov.uk/
http://data.wien.gv.at/
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qualitative and also quantitative indicators about city performance, such as
for instance co; emissions or energy consumption per capita. Although many
of these quantitative indicators are openly available, the datasets had to be
collected, integrated, and checked for integrity violations because of the fol-
lowing reasons: Heterogeneity: ambiguous data published by different Open
Data sources in different formats, Missing data: data that needed to be added
or estimated by manual research and, Outdated data: soon after the Gc1 had
been published in 2012, its results were likely already obsolete.

Inspired by this concrete use case of the Gc1, the goal of the present work
is on collecting, integrating, and enriching quantitative indicator data about
cities including basic statistical data about demographics, socio-economic
factors, or environmental data, in a more automated and integrated fashion
to alleviate these problems.

Even though there are many relevant data sources which publish such
quantitative indicators as open data, it is still cuambersome to use data from
multiple sources in combination, and to keep this data up-to-date. The system
we present in this chapter, the Open City Data Pipeline, thus contributes by
addressing all of the three above challenges in a holistic manner:

Heterogeneity All this data is published in different formats such as csv,
JSON, XML, proprietary formats such as XLrs, just as plain HTML tables or
within PDF files—and so far to a much lesser degree only as RDF or even as
Linked Data [Neumaier, Umbrich and Polleres 2016]. Also, the specifications
of the individual data fields—how indicators are defined and how they have
been collected—are often implicit in textual descriptions only and have to be
processed manually for understanding whether seemingly identical indicat-
ors published by different sources are indeed comparable.

We present a systematic approach to integrate statistical data about cit-
ies from different sources as Statistical Linked Data [Kampgen, O’Riain and
Harth 2012] as a standardised format to publish both the data and the meta-
data. We build a small ontology of core city indicators, around which we can
grow a statistical Linked Data cube: we use standard Linked Data vocabu-
laries such as the rRDF Data Cube vocabulary (9B) [Cyganiak, Reynolds and
Tennison 2014] to represent data of statistical data cubes, as well as the prov
vocabulary [Lebo, McGuinness and Sahoo 2013] to track the original sources
of the data, and we create an extensible pipeline of crawlers and Linked Data
wrappers collect this data from the sources.

Missing values Data sources like Eurostat Urban Audit cover many cities
and indicators. However, for reasons such as cities providing values on a vol-
untary basis, the published datasets show a large ratio of missing values. The
impact of missing values is aggravated when combining different datasets,
due to either covering different cities or using different, non-overlapping sets
of indicators.
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Our assumption—inspired also by works that suspect the existence of
quantitative models behind the working, growth, and scaling of cities [Betten-
court et al. 2007]—is that most indicators in such a scoped domain as cities
have their own structure and dependencies, from which we can build stat-
istical prediction models and ontological background knowledge in the form
of equations.” We have developed and combined integrated methods to com-
pute missing values on the one hand using statistical inference, such as differ-
ent standard regression methods, and on the other hand rule-based inference
based on background knowledge in the form of equations that express know-
ledge about how certain numerical indicators can be computed from others.?
While this new method is inspired by our own prior work on using statistical
regression methods [Bischof, Martin et al. 2015a] and equational knowledge
in isolation [Bischof and Polleres 2013], as we can demonstrate in our eval-
uation, the combination of both methods outperforms either method used
alone. We re-publish the imputed/estimated values, adding respective PrROV
records, and including error estimates, as Linked Data.

Updates and changes Studies like the Gcr are typically outdated soon after
publication since reusing or analysing the evolution of their underlying data
is difficult. To improve this situation, we need regularly updated, integrated
data stores which provide a consolidated, up-to-date view on data from rel-

evant sources.

The extensible single data source wrappers—based on the work around
rule-based linked data wrappers by Stadtmiiller et al. [2013]—are crawling
each integrated source regularly for new data. The crawler are thus keeping
the information as up-to-date as possible, while at the same time re-triggering
the missing value prediction methods and thereby continuously improving
the quality of our estimations for missing data: indeed we can show in our
evaluations, later in Chapter 7, that the more data we collect in our pipeline
over time, the better our prediction models for missing values get.

IN SUMMARY, the contribution for our main use case is twofold, both in terms
of building a practically deployed, concrete system to integrate and enrich
statistical data about cities in a uniform, coherent and reusable manner, and
contributing novel methods to enrich and assess the quality of Statistical
Linked Data:

1. As for the former, we present the Open City Data Pipeline which is based
on a generic, extensible architecture and how we integrate data from mul-
tiple data sources that publish numerical data about cities in a modular
and extensible way, which we re-publish as Statistical linked data.

2. As for the latter, we first describe a novel method to exploit equational
knowledge for the case of multidimensional datasets in Chapter 6 by ex-
tending RDF attribute equations from Chapter 4, and then combine this

7 We sometimes refer to
“predicting” instead of “imputing”
values when we mean estimating
indicator values for cities and
temporal contexts where they are
not available. These predictions
may be confirmed or refuted, when
additional data becomes available.
8 Such equational knowledge
could be also understood as
“mapping” between indicators,
which together with manually
crafted equality mappings between
indicators published by different
data sources can be exploited for
enrichment, e.g. if one source
publishes the population and area
of a city, but not the population
density, then this missing value,
available for other cities directly
from other sources, could be
computed by an equation.



OPEN CITY DATA PIPELINE

(1) Linked Data (2) Linked Data
Wrapping Crawling

Y

(1) Linked Data | e
Wrapping Enrichment

(5) Statistical Missing-

Values-Prediction (3) Data Integration

A

(7) Data Publication «—

(6) QB Equations

(4) Data Storage

1
1
1
1
1
1
1
1
1
1
1
'
| X
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 5.1: Open City Data Pipeline workflow

with statistical regression methods, in order to impute and estimate miss-
ing values in Chapter 7.

We also evaluate our approach in terms of measuring the errors (by evaluat-
ing the estimated root mean square error rate (RMSE) per indicator) of such
estimates, demonstrating that firstly, the combination of statistical inference
with equations indeed pays off, and secondly, the regular update and collec-
tion of additional data through our pipeline contributes to improve our es-
timations for missing values in terms of accuracy (see also Chapter 7). Note
that the method of enrichment by QB equations cannot only be used for im-
puting missing values, but also be used to assess the quality of ambiguous
values from different data sources: by “rating” different observed values for
the same indicator, year and city from different sources against their distance
to our estimate, we have means to return confidence in different sources in
such an integrated system.

5.2 Overview and System Architecture

The workflow of the Open City Data Pipeline (ocDp) is illustrated in Figure 5.1
and consists of the following series of steps:

1. Data is provided as Statistical Linked Data via wrappers which have to be
created once per source in the “Wrapping step”.

2. A crawler collects data regularly (currently, weekly) from different sources
in the “Crawling” step through the wrappers.

3. In the “Data Integration” step the data is integrated into the global cube,
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Table 5.1: Values of the Eurostat Dataset

Year(s) Cities  Indicators  Available Missing  Missing Ratio (%)
1990 131 88 1799 9641 84.27
2000 433 163 6420 63996 90.88
2005 598 168 20 460 79 836 79.60
2010 869 193 56528 110 996 66.26
2015 310 69 2030 19291 90.48
2004-2016 879 207 437 565 1331250 75.26
1990-2016 966 209 506 854 2257171 81.66

where data is enriched by links and heterogeneities resolved.

4. In the “Data Storage step”, the data is loaded into a triple store.

5. A further enrichment step applies statistical methods for missing values
prediction.

6. Another enrichment step exploits equational background knowledge in
the form of QB equations.

7. Finally, in the “Data publication” step, the resulting enriched Linked data
is made accessible.

5.2.1  Data Sources

Many statistical data sources, interesting for data analysis, are nowadays
openly available. Many indicators in these data sources are provided on a
country level and only a subset of indicators are available on the city level.
We have identified the following potential providers of statistical data con-
cerning cities:

" DBPEDIA’

= Wikidata®

= Eurostat with Urban Audit

= United Nations Statistics Division (UNSD) statistics
= US Census Bureau statistics

= Carbon Disclosure Project™

= individual city data portals

In particular, we use statistical data from the un and from Eurostat, which
are integrated and enriched by the ocpp. While the data sources contain data
ranging from the years 1990 to 2016, most of the data concerns the years after
2000. Further, not every indicator is covered over all years, where the highest
coverage of indicators is between 2004 and 2015 (see Tables 5.1 and 5.2). Most
European cities are contained in the Eurostat datasets. The UNsD contains the
capital cities and cities with a population over 100 ooo from all over the world,
all listed in the un Demographic Yearbook."

The previous version of the ocpr by Bischof, Martin et al. [2015a] con-
tained data from 1990 to 2013 with 638 934 values from Eurostat and 69 772

9 http://dbpedia.org/
10 http://wikidata.org/

11 https://www.cdp.net

12 http:
//unstats.un.org/unsd/demographic/
products/dyb/dyb2012.htm
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http://unstats.un.org/unsd/demographic/products/dyb/dyb2012.htm
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13 http://ec.europa.eu/eurostat

14 http:
//ec.europa.eu/eurostat/web/cities

15 http://ec.europa.eu/europe2020/

16 http:
//ec.europa.eu/eurostat/web/cities

Table 5.2: Values of the United Nations Dataset

Year(s) Cities  Indicators = Available = Missing  Missing Ratio (%)
1990 5 3 8 7 46.67
2000 1078 61 3861 61836 94.12
2005 777 61 2110 45226 95.54
2010 1525 64 5866 91 670 93.99
2015 216 3 568 77 11.94
2004-2016 2095 64 28 849 511759 94.66
1990-201) 3381 64 40532 685548 94.42

values from the UN data source. Due to some reorganisation in the Eurostat
and UN datasets, the Eurostat datasets contain now 506 854 values and the
UN provides 40 532 values. Regarding indicators, we now have 209 instead of
215 Eurostat and 64 instead of 154 UN indicators. The reason for the drop in
indicators is due to the fact that the uN publishes fewer datasets. The same
effect can be seen for the cities, where we have 966 instead of 943 Eurostat
and 3381 instead of 4319 UN cities. Due to the smaller size of the datasets
(see Tables 5.1 and 5.2), we now have an improved missing values ratio of
81.7% (before 86.3%) for Eurostat, respectively 94.4% (before 99.5%) for the un
dataset.
We now describe each of the data sources in detail.

Eurostat Eurostat' offers various datasets concerning different EU statistics.
The data collection is conducted by the national statistical institutes and Euro-
stat itself. Of particular interest is the Urban Audit (ua) collection,* which
started as an initiative to assess the quality of life in European cities. ua aims
to provide an extensive look at the cities under investigation, since it is a
policy tool to the European Commission: “The projects’ ultimate goal is to
contribute towards the improvement of the quality of urban life” [Office for
Official Publications of the European Communities 2004]. In the meantime
[Eurostat 2016] the goals for ua were aligned with the Europe 2020 strategy’
which in turn is aligned with the UN 2030 Agenda’s Sustainable Development
Goal #11: “Make cities and human settlements inclusive, safe, resilient and
sustainable” [United Nations 2015a]. Currently, data collection takes place
every three years (last survey published in 2015) and is published via Euro-
stat Urban Audit.’® All data is provided on a voluntary basis which leads to
varying data availability and missing values in the collected datasets. At the
city level, Urban Audit contains over 200 indicators divided into the categor-
ies Demography, Social Aspects, Economic Aspects, and Civic Involvement.
Currently, we extract the datasets that include data for the following topics:

= population by structure, age groups, sex, citizenship, and country of birth
= fertility and mortality
= living conditions and education


http://ec.europa.eu/eurostat
http://ec.europa.eu/eurostat/web/cities
http://ec.europa.eu/eurostat/web/cities
http://ec.europa.eu/europe2020/
http://ec.europa.eu/eurostat/web/cities
http://ec.europa.eu/eurostat/web/cities
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= culture and tourism
= labour market, economy, and finance
= transport, environment, and crime

United Nations Statistics Division (UNsD) The uNsD offers data on a wide
range of topics such as education, environment, health, technology and tour-
ism for cities worldwide. The focus of the UNSD is usually on the country level,
but there are datasets on cities available as well. Our main source is the unsD
Demographic and Social Statistics, which is based on the data collected since
1948 annually by questionnaires to national statistical offices.'”” Currently we
use the datasets on the city level that include the following topics:

= population by age distribution, sex, and housing

= households by different criteria (e.g., type of housing)

= occupants of housing units/dwellings by broad types (e.g., size, lighting)
= occupied housing units by different criteria (e.g., walls, waste)

The full unsp Demographic and Social Statistics data has over 650 indicators,
wherein we kept a set of 64 coarse-grained indicators and dropped the most
fine-grained indicator level. For example, we keep housing units total but drop
housing units 1 room. We prefer more coarse-grained indicators to avoid large
groups of similar indicators which are highly correlated.

5.2.2 Pipeline Components

In order to realise these steps, the architecture of the ocpP system imple-
ments several components. Figure 5.2 gives a high level overview of the ar-
chitecture with a triple store being the central part. The data enrichment
workflow uses various methods to improve data quality and enrich the data.

Linked Data Wrappers Currently, none of the mentioned data sources pub-
lishes statistical data as Statistical Linked Data upfront. Thus, we use a set
of wrappers which publish the data from these sources according to the prin-
ciples listed in Chapter 2. Appendix B.1 below explains these wrappers in
more detail.

Linked Data Crawler A Linked Data crawler starts with a seed list of 1R1s
and crawls relevant connected Linked Data. The resulting RDF data is col-
lected in one big RDF file and eventually loaded into the triple store. Ap-
pendix B.3 explains the linked data crawler in more detail.

Triple Store  We use a standard Virtuoso 7 triple store as a central compon-
ent to store data at different processing stages. For data loading we use the
Virtuoso SQL console which allows faster data loading. For all other data ac-
cess we rely on Virtuoso’s sPARQL 1.1 interface which allows us not only to

17 http:
//unstats.un.org/unsd/demographic/
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query for data, but also insert new triples with spArRQL Update (cf. [Gearon,
Passant and Polleres 2013]).

Enrichment Component In an iterative approach, we improve data quality
of the crawled raw data. This component covers steps (4)-(6) in the workflow
shown in Figure 5.1: in this configurable workflow we use several different
sub-components corresponding to these steps. Each workflow component
first reads input data (=observations) from the triple store via SPARQL quer-
ies, processes the data accordingly and inserts new triples into the triple store
either via sPARQL Insert queries or the Virtuoso bulk loader facility (the first
option is more flexible—it allows the execution of the workflow on a different
machine—the second usually allows faster data loading).

The workflow currently uses three different subcomponents correspond-
ing to steps (4), (5) and (6), respectively:

= The Data Integration sub-component, corresponding to step (3), performs
linking and data integration steps and materialises the global cube in a sep-
arate named graph. This linking and materialisation effectively resolves dif-
ferent types of heterogeneity found in the raw data: (i) different 1r1s for
members, (ii) different 1r1s for dimensions (iii) different psps (although the
DsDs must be compatible to some extent for the integration to make sense).
Eventually, the global cube provides a unified view over many datasets from
several sources. This component is implemented with spPArQL Update quer-
ies and supplied background knowledge for the integration. The exact pro-
cess of linking statistical data and the materialisation will be described in
more detail in Appendix B.2.

= The Statistical Missing Values Prediction sub-component for missing value
prediction, corresponding to step (5), extracts the whole global cube gener-
ated by the materialisation as one big data matrix, which is then used for
applying different statistical regression methods to train models for miss-
ing value prediction. This component is implemented as a set of R scripts
which extract the data with sPARQL queries. We then train and evaluate the
models for each of the indicators. If the selected model delivers predictions
in a satisfactory quality we apply the model and get estimates for the indic-
ators. Finally the component exports the statistical data together with error
estimates to one RDF file which is then loaded into the triple store with the
Virtuoso bulk load feature and added to the global cube. Chapter 7 explains
this component in more detail.

= The 0B Equations sub-component, corresponding to step (6), uses equations
from different sources to infer even more data. To this end, we introduce
QB equations. These QB equations provide an RDF representation format
for equational knowledge and a rule-based semantics, as well as a forward-
chaining implementation to infer new values. QB equations are implemen-



5.3 UNIFIED VIEW OVER STATISTICAL LINKED DATA 91

ted in a naive rule engine which directly executes SPARQL INSERT queries
on the triple store. Chapter 6 introduces the concept of QB equations with
syntax, semantics and implementation.

Lastly, in Section 7.3, we will explain the interplay between the Data Enrich-
ment sub-components in more detail. In summary, however, after cleansing
and linking in component (4), we first run the QB equations component (6)
once, to compute any values by equations that can be derived from the raw
factual data alone, then approximate the remaining missing values by the
statistical missing values prediction component (5), after which finally we
run the QB equations component (6) again to improve predictions from (5)
iteratively. As we will see in a detailed evaluation in Section 7.3, this iterative
combination indeed performs better than using either (5) or (6) alone.

5.2.3 Data Publication

Eventually, after the data is crawled and loaded into the triple store, improved
and enriched by our workflow, the resulting global cube is available for con-
sumption.

We provide a sPARQL endpoint'® based on Virtuoso, where the global cube
is stored in a named graph.” The prefix names used in the examples above
are already preset in Virtuoso, thus no prefix declarations are necessary for
SPARQL queries.

We also provide a simple user interface to query values for a selected
indicator and city in the global cube.?® Queries are directly executed on the
triple store during loading of the website using a JavaScript library “Spark”*;
thus one can have a look at the SPARQL queries in the source code. We show
all predicted values for transparency reasons. We simply order by the error
value, i.e., the most trustworthy value per year is always shown first.

5.3 Unified View over Statistical Linked Data

As the different data sources use different identifiers (and the wrappers use
different 1r1s), we need to link the varying 1r1s before we can do an integrated
querying of the data. As the foundation for efficiently querying Statistical
Linked Data—and in turn enriching the data as described in Chapters 6 and 7—
we define a unified view of all crawled datasets about cities in a simplified
version of the global cube [Kémpgen, Stadtmiiller and Harth 2014]. In the
following, we describe the structure of the global cube.

We define the unified view as the basis for querying as follows. The qb:Ob-
servations (consisting of dimensions and measures) have the following struc-
ture, starting with the dimensions:

18 http:
//citydata.wu.ac.at/ocdp/sparql

19 http://citydata.wu.ac.at/qb-
materialised-global-cube

20 http://kalmar32.fzi.de/indicator-
city-query.php

21 https:
//km.aifb.kit.edu/sites/spark/
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= For the time dimension we use dcterms:date.

= For the time dimension values we use single years represented as String
values such as "2015".

= For the geospatial dimension we use sdmx-dimension:refArea, which is re-
commended by the @B standard.

= For the geospatial dimension values we use instances of dbr:City, such as
dbr:Vienna.

= For the indicator dimension we use cd:haslndicator.

= For the indicator dimension values we use instances of cd:Indicator, such
as cd:population_female. For the indicator dimension values, we defined the
cDP ontology as the main hub of indicator 1r1s to link to since no list existed
with common indicator values.

Most data sources follow the practice of using an unspecific measure dimen-
sion sdmx-measure:obsValue and a dimension indicating the measured vari-
able, e.g. estatwrap:indic_na. For the unified view, we thus also assume data
cubes to have only one general measure, sdmx-measure:obsValue. Please note
that there are different alternative (but equivalent) representations of the
same information. Specifically for measure properties, in QB there is a choice
for the structuring of the observations. Either use a single observation value
property and a dedicated indicator dimension, or encode the indicator in the
measure property. To sum up: in-line with established usage, we use a single
measure property, but that structure contains all the information that would
also be present in the alternative representation.

If we want to pose queries over the two datasets, we have two options.
Either specifically write the query to consider possibly different identifiers
(i.e., need to know all identifiers) or 2) assume existing links and reasoning.
Then, if we query for values for the canonical identifiers (as for any other
identifier in the equivalence class), we also get the values for the respective
other identifiers. In this chapter, we assume reasoning to allow for flexible
addition of new sources without the need to change the queries for each new
data source.

As an example, assume we want to query all values of the indicator “pop-
ulation” of the area “Vienna”, in the year “2010” over data from both datasets.
The indicator would be expressed as a dimension, with a IRI representing
“population” as dimension value. The area would be expressed with a dimen-
sion, with a IRI representing “Vienna” as dimension value. The query looks
like the following:

SELECT ?city ?year ?value

WHERE {

?0bs cd: hasIndicator cd:population ;

sdmx—dimension:refArea dbr:Vienna ;

dcterms:date ?year ;

sdmx—measure:obsValue ?value.

}
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Our unified view uses the basic modelling features of the 9B vocabulary.
In particular, we model indicators in a way that include what otherwise might
be encoded as separate dimensions. In the more complex modelling, we would
need to use the union of all dimensions of the source datasets, which would
lead to introducing an ALL dimension value for those dimensions that are
not distinguished by the particular dataset (see [Kampgen, Stadtmiiller and
Harth 2014] for details on this more normalised representation). However, all
the newly introduced dimensions per dataset would need to be considered
in querying which complicates the queries. Rather than adding a dimension
sex to encode gender, we create separate indicator 1RIs, for example for pop-
ulation, population male and population female. A benefit of the relatively
simple structure is that queries and rules operating on the unified view are
also simple.

We have published the data structure definition of the global cube us-
ing the QB vocabulary. Besides the general measure (sdmx-measure:obsValue),
the gb:DataStructureDefinition of the global cube uses the mentioned dimen-
sions dcterms:date, sdmx-dimension:refArea and cd:hasindicator. Also, we have
defined instances of gb:AttributeProperty for cd:estimatedrmse (for describing
the error), cd:preferredObservation (for linking an observation to a more reli-
able observation), prov:wasGeneratedBy (for describing provenance informa-
tion) and prov:generatedAtTime (for the time of generation) that help to inter-
pret and evaluate the trustworthiness of values.

Please note that data sources use different identifiers for dimensions and
dimension 1ris. In the global cube, we use canonical 1rIs to represent re-
sources from different data sources.

IN suMMARY, we have defined the global cube, from freely available statistical
open data sources, which can be queried in subsequent steps. We give detailed
description of the first three workflow components, namely (1) Linked Data
Wrappers, (2) Crawling and (3) Integration, in Appendix B. Next, we continue
with workflow step (6) 0B Equations, by applying the foundational ideas of
RDF attribute equations to the multidimensional data model introduced in
this chapter.
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QB Equations

The method of RDF attribute equations introduced in Chapter 4 are not dir-
ectly applicable to data modelled according to a multidimensional database
as introduced in Chapter 5 and commonly used for statistical data. With oB
equations, this chapter transfers the idea of rRDF attribute equations to a multi-
dimensional data model and extends the approach with provenance tracking
and error propagation. Parts of this chapter have been published as Bischof,
Harth et al. [2017].

Section 6.1 gives an detailed introduction into the motivation of QB equa-
tions. Section 6.2 introduces the rRDF-based syntax for QB equations. Sec-
tion 6.3 gives a rule-based semantics for QB equations. Section 6.4 describes
the implementation of QB equations in the ocpp. Section 6.5 lists relevant
related works.

6.1 Introduction

owL 2 gives only little support for reasoning with literal values. Although
knowledge about the relations of different numeric literals (equational know-
ledge) exists in ontologies, for example the QUDT ontology [Ralph Hodgson
2011], it cannot be used to infer new literal values by an owL reasoner, since
OWL 2 in general cannot compute new (numeric) literals. For statistical data,
especially statistical linked data, equational knowledge can be interesting to
compute derived indicators or fill in the gaps of missing values. Examples for
useful equational knowledge include unit conversion, indicator definitions, or
linear regression models. With QB equations (QBE) we introduce a framework
to exploit equational knowledge to infer numerical data using Semantic Web
technologies, with fine-grained provenance tracking and error propagation
for inaccurate values. Both before and after applying the machine learning
prediction methods (described in detail in Chapter 7) in the ocpp workflow,
the QBEs generate observations from the whole combined dataset. The res-
ulting observations are used for evaluation, consistency checking and are
published if they are new or better than any existing observation with the
same dimension members.

Example 6.1. The Eurostat indicator “Women per 100 men” is defined as an
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1 cf. http://www.w3.0rg/TR/sparql11-
query/#rNumericExpression

equation as follows:

population_female

women_per_100_men = 100 ¢

population_male

The approach of QBESs presented in this chapter is a combination and exten-
sion of two earlier approaches “rDF attribute equations” and “complex cor-
respondences”. RDF attribute equations (see Chapter 4) use equational know-
ledge and give an RDF syntax and a Description Logic semantics to derive
numerical owL data properties from other such properties. The approach
was implemented in a backward-chaining manner for SPARQL queries. QBEs
however, operate on QB observations instead of owL data properties, and are
implemented in a forward-chaining manner and provide error propagation
and fine-grained provenance tracking. Complex correspondences [Kémpgen,
Stadtmiiller and Harth 2014] define rules, with numerical functions, to com-
pute QB observations from other QB observations. They transfer the concept
of correspondences over relational data to the Semantic Web data model us-
ing the QB vocabulary. In contrast to complex correspondences, QBEs are
given in an RDF syntax and is more generic since it uses (more general) equa-
tions instead of functions resulting in more computed values without the
need to (manually) create one rule for each variable in the equation.

6.2 QB Equations RDF Syntax

We express QBEs in an RDF syntax. Since—to the best of our knowledge—no
vocabulary exists for this purpose so far, we have to introduce a new vocab-
ulary expressing QBEs and QB rules.

Each 0BE is identified by a 1r1 and consists of two parts: (i) represent-
ation of a mathematical equation using (arithmetic) functions and variables
and (ii) a mapping of observations to variables using observation specifica-
tions. Figure 6.1 gives an overview of the QB equations ontology showing
all the introduced classes, properties and datatypes as well as reuse of the
0B ontology. When encoded in RDF we call these relationships 0B equations
or QB rules. QBEs specify relationships between observations which can be
reformulated into different “directions” while @B rules are valid only in one

direction.

Representation of the Equation or Function One possibility to represent equa-
tions in RDF would be building an operator tree in RDF similar to MathML
[Carlisle and Miner 2014], an XML representation of mathematical concepts,
including equations. The SWRL RDF syntax also uses such a verbose syntax,
for example for predefined mathematical functions.

To keep the representation simple and still human-readable without a
custom Ul, we define the core of the QBES, which is the equation itself, as
a literal that directly reuses SPARQL’s arithmetic expression syntax,' i.e., we
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gbe:variableType

gbe:variableName

gbe:ObsSpecification ———qgbe:filter—» gbe:DimSpecification
gbe:variable \gggiionu%;tut gbe:value qbe:di\mension
gbe:Equation gbe:Rule rdfs:Resource [ gb:DimensionProperty
qbe:haslliquation qbe:has!:unction

gbe:equationType gbe:functionType

Figure 6.1: QB equations ontology

use a datatype literal with the datatype gbe:equationType, the lexical space of
which is defined by the following grammar rule (in the syntax and referring
to non-terminal symbols of the sPARQL grammar):

equationType = Var ’=" NumericExpression

This choice enables standard SPARQL parsers, or other standard libraries for
mathematical expressions, to process these equations and allows straightfor-
ward implementations by SPARQL engines. As an example we use the equa-
tion for the Eurostat indicator definition of “Women per 100 men”:

"?women_per_100_men = ?population_female * 100 / ?population_male"*gbe:equationType

The property gbe:hasEquation relates an instance of gbe:Equation to such an
equation literal. The lexical space of datatype gbe:variableType is—analogous
to gbe:equationType—defined by the SPARQL grammar non-terminal "Var’.

Observation Specification The second part maps observation values to the
variables used in the equation. When querying a QB dataset, observations
are specified by giving values for all of the dimensions. This approach would
be too constraining and might lead to multiple representations of essentially
the same equation. Instead, an observation specification only needs values
for some of the dimensions. In an example of unit conversions, one would
only specify the value of the unit dimension because the equation should be
applicable to any kind of observation given in that unit, regardless of the
values of the other dimensions. Intuitively the values of all other unspecified

dimensions must be the same among all specified observations.

Example 6.2. The following example shows the complete definition of the
QBE for the Eurostat indicator “Women per 100 men”. The QBE defines a
variable ?women_per_100_men which binds to all observations for which the
member of the dimension cd:hasindicator is set to cd:women_per_100_men (see
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2 while we have to take care of
division by zero, for details
cf. Chapter 4

lines 2—6). The other two variables ?population_male and ?population_female
are defined analogously, in lines 7-11 and 12-16. Eventually the QBE repres-
ents the equation relating the variables, as a gbe:equationType-typed literal in
the last line.

1 ex:women—per—100—men a gbe:Equation;
2 gbe:variable [ a gbe:ObsSpecification ;

3 gbe: filter [ a gbe:DimSpecification ;

4 gb:dimension cd:hasIndicator ;

5 gbe:value cd:women_per_100_men];

6 gbe:variablename "?women_per_100_men"AAqgbe:variableType ] ;
7 gbe:variable [ a gbe:ObsSpecification ;

8 gbe: filter [ a gbe:DimSpecification ;

9 gb:dimension cd:hasIndicator ;

10 gbe:value cd:population_male] ;

l gbe:variablename "?population_male"**qgbe:variableType] ;
12 gbe:variable [ a gbe:ObsSpecification ;

13 gbe: filter [ a gbe:DimSpecification ;

14 gb:dimension cd:hasIndicator ;

15 gbe:value cd:population_female] ;

16 gbe:variablename "?population_female"**gbe:variableType] ;

7 gbe:hasEquation "?women_per_100_men = ?population_female * 100 / ?population_male"
gbe:equationType.

The type declarations are only given for completeness and are not neces-

sary in practice. o

QBEs can be evaluated in multiple directions, essentially creating a function
to compute a value for each of the variables from all the other variables.
Using the example above, we could infer new observations for each of the
three indicators cd:women_per_100_men, cd:population_female and cd:popula-
tion_male from the other two. Obviously this works only for invertible func-
tions including the usual arithmetic operators: addition, subtraction, multi-
plication and division.” In fact, we reuse the definition of simple equations in
Definition 4.1.

Equations of this form can be easily transformed into an equivalent form
xi = f'(x1,...,Xi_1, Xi+1, . . ., Xp) for each appearing variable x;, 2 < i < n.
For instance, in our example the equation can likewise be used to compute

cd:population_female:

"?women_per_100_men * ?population_male / 100 = ?population_female" qgbe:equationType

These equivalent transformations can be easily computed by standard
mathematical libraries (as already discussed in Section 4.2) which we will use
in our implementation, see Section 6.4 below). A central piece of this trans-
formation is a function solve with two parameters: the equation as string
and the name of the target variable to solve for. The solve function algebra-
ically solves an equation for a variable and returns a function. For example
solve(a = b/c,c) would return the function b/a whereas solve(a = b/c, b)
would return a*c. The function solve is implemented in every computer al-
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gebra system—for example in Maxima. That is, we could write
F/(xts oo Xic1y Xit1s - - -5 Xn) = solve(x; = f(x2,...,%n), X;)

Analogously to gbe:equationType, we define a datatype gbe:functionType
describing an arithmetic function or expression whose lexical space is again
defined via a SPARQL grammar non-terminal rule:

functionType := NumericExpression

Following the example for equationType a function for computing “Wo-
men per 100 men” is the following:

"population_female * 100 / ?population_male"**gbe:functionType

0B rules (or functions) are similar to equations but can be evaluated only
in one direction. Thus @B rules do not specify generic variables, but one or
more input variables and exactly one output variable. These variables are spe-
cified in the same way as the variables in QBEs, while the output variable does
not need a gbe:variableName.

Example 6.3. A QB rule to convert the values for “Women per 100 men” to
integer, using the function round to demonstrate a non-invertible function.
ex:gbrulel a gbe:Rule ;
gbe:input [
gbe: filter [
gbe:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men];
gbe:variablename "?women_per_100_men"**qgbe:variableType ] ;
gbe:output [
gbe: filter [
gbe:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men_approx]];
gbe:function "round(?women_per_100_men)"*gbe:functionType. o

6.3 Rule-Based Semantics for QB Equations

We define the semantics of QBEs by rewriting to a rule language. In fact SPAR-
QL INSERT queries can be seen as rules over RDF triple stores where the tem-
plate of the INSERT clause is the rule head and the graph pattern in the WHERE
clause is the rule body. We note that this idea is not new, and implements the
same concept as interpreting CONSTRUCT statements as rules. For example,
Polleres, Scharffe and Schindlauer [2007] defined a formal semantics for such
rules based on the Answer Set Semantics for non-monotonic Datalog pro-
grams (AsP) with external (builtin) predicates and aggregates [Eiter et al.
2005]. Builtin predicates are introduced in SPARQL 1.1 through expressions
and assignment (BIND AS) and non-monotonicity in SPARQL is introduced by
features such as OPTIONAL and NOT EXISTS.

We define the semantics of QBEs in three steps: (i) normalisation of QBES
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gbe:Equation

DSD
ex:women-per-100-men

Normalisation

v v v
qbe:Rule qbe:Rule qbe:Rule
ex:women-per-100-men-1| | ex:women-per-100-men-2 | | ex:women-per-100-men-3
A 4

| Rule conversion |

A 4 A 4 A
SPARQL INSERT query 1 SPARQL INSERT query 2 SPARQL INSERT query 3
| v

Evaluate SPARQL queries

Fixpoint
reached?

Figure 6.2: 9B equation workflow with the example of a Eurostat indicator defini-
tion/equation

no

to QB rules (n QB rules generated from a QBE in N variables), (ii) conversion
of 9B rules (generated from QBES or as input) to SPARQL INSERT queries (iii) a
procedure to evaluate a program (a set of SPARQL INSERT queries) until a
fixpoint is reached. See Figure 6.2 for an overview of the semantic steps along
with the example of the Eurostat indicator “Women per 100 men” in three
variables. Note, that in the general case, rules with the expressive power of
Asp with external predicates do not have a unique finite fixpoint, but we will
define suitable termination conditions.

6.3.1 Normalisation

A QBE in n variables can be viewed as a meta rule representing n rules: as
discussed before, for each variable x;, we can generate a rule to compute x;
from all the other variables in the equation e, by resolving the equation to
x; = solve(e, x;). To simplify the semantics specification we thus first nor-
malise each QBE to n QB rules and then in the next step give the semantics
for @B rules. That is, the QB rules generated in the normalisation, have x; as
the output variable, and the other (n — 1) variables as input variables with
f'Ca, ..y Xiz1, Xit1, - - - » Xp) being the function to compute the output.

Algorithm 6.1 shows the main algorithm of the conversion. The function r
in Algorithm 6.2 takes three parameters: the original QBE IRI, the name of the
output variable and the function. The function sk(...), with a variable number
of parameters is a Skolem function deterministically returning a unique IRI
for each unique parameter combination.
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Algorithm 6.1: gbr(G)

Input: RDF graph G containing QBEs
Output: RDF graph containing QB rules for all equations
R=0
foreach (?e, ?eq) in [?e rdf:type gbe:Equation; gbe:hasEquation ?eq] do
foreach (?v, 2vhame) in [?e gbe:variable ?v.?v gbe:variableName ?vname] s do
f = solve(?eq, 2vname)
R := RUr(?e,vname, f)
return R

Algorithm 6.2: r(G, e, 0, )

Input: RDF graph G, QBE IRI e, variable name v, function string f
Output: RDF graph of one @B rule
n = sk(e, v)
R = {n rdf:type gbe:Rule; gbe:hasFunction f; prov:wasDerivedFrom e; gbe:output
0.}
foreach (?v, 2vname) in [e gbe:variable ?v . ?v gbe:variableName ?vname] s do
if 2vname # o then
‘ R = RU {n gbe:input 2v}
return R

Eventually, after applying Algorithm 6.1, we could replace all QBES in an
RDF graph with the generated QB rules, i.e. these two representations are
equivalent. The remainder of our semantics only deals with rules.

Example 6.4. After normalisation, the QBE of Example 6.2 results in three QB
rules, one for each of the three variables. The QB rule to compute the Eurostat
“Women per 100 men” indicator is given below. Instead of variables we now
have input and output and the equation was replaced by a function in the
input variables.

ex:women—per—100—men—w a gbe:Rule;;
prov:wasDerivedFrom ex:women—per—100—men ;
gbe:input [
gbe: filter [
gb:dimension cd:hasIndicator ;
gbe:value cd:population_male] ;
gbe:variablename "?population_male"**qgbe:variableType ] ;
gbe:input [
gbe: filter [
gb:dimension cd:hasIndicator ;
gbe:value cd:population_female] ;
gbe:variablename "?population_female"Aqgbe:variableType ] ;
gbe:output [
gbe: filter [
gb:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men]];
gbe:hasFunction "?population_female * 100 / ?population_male"**gbe:functionType.

For each of the other two indicators cd:population_female and cd:popula-
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tion_male one QB rule is created analogously. O

6.3.2 Rule Conversion

In this step QB rules are converted to SPARQL INSERT queries. The resulting
query has to implement several tasks: retrieve the input observations, com-
pute the output observations, generate several IRIs, perform error propaga-
tion and provenance tracking and ensure termination when evaluated re-
peatedly.

Compared to other rule languages, SPARQL queries provide more complex
features, but, as shown earlier by Polleres and Wallner [2013] and Angles
and Gutierrez [2008], can be compiled to—essentially—non-recursive Data-
log with negation, wherefore INSERT queries, read as rules, have the same
expressivity.

Without loss of generality, we repeat two assumptions we made in Chap-
ter 5—which could be easily checked in a pre-processing step:

= there is always only a single measure per observation
= the measure predicate that holds the measure value is fixed to sdmx-mea-
sure:obsValue

On a high level, the INSERT queries corresponding to QB rules have the fol-
lowing structure:
INSERT {
output observation template
— with PROV annotations to describe the generation by \gbe rules
— error estimation }
WHERE {

one pattern for each input observation
—with all dimensions as specified in the DSD and error estimate

BIND patterns for IRI creation for
— the newly generated observation
— the prov: Activity

BIND patterns to
— assign current time to variable for PROV annotation
— compute measure value of target observation
— estimate error of target observation

Termination condition }

We now explain the different parts of this SPARQL query in detail.

Output Observation The output observation is set in the head with the fixed
dimensions from the psp and fixed dimension values if specified in the ob-
servation specification of the @B rule. The other dimension values are taken
from the input variables. The rule head for Example 6.4 would look like the
following query fragment, incorporating the PROV annotations:
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?0bs gb:dataSet globalcube:global—cube—ds;
cd: hasIndicator cd:women_per_100_men;
dcterms:date ?year ;
sdmx—dimension:refArea ?city ;
sdmx—measure:obsValue ?value ;
prov:wasDerivedFrom ?population_male_obs, ?population_female_obs ;
prov:wasGeneratedBy ?activity ;
prov:generatedAtTime ?now ;
cd:estimatedRMSE ?error .

It is important to note that the SPARQL INSERT application is idempotent,
i.e., repeated applications of a generated SPARQL INSERT query will not add
any more triples after the first application. Idempotence would be lost if blank
nodes are used in the head, because they would create a fresh blank node for
every application of a SPARQL query, even if the SPARQL query returns only
a single result. Furthermore, we have to ensure that all values generated by
the query are completely determined by the variable bindings of the WHERE
clause.

Input Observations For each input observation one set of triple patterns
which asks for one observation is generated for the SPARQL WHERE clause. For
each gbe:DimSpecification a dimension value is fixed. For all the other dimen-
sions a fixed variable is used in all input observations. In the example below,
again generated from Example 6.4 the query contains for all dimension value
variables, except for cd:haslndicator which is fixed to cd:population_male and
cd:population_female as specified by the @B rule input dimension specification.
Furthermore, the observation value and the estimated error are retrieved.

?population_male_obs gb:dataSet globalcube:global—cube—ds;

cd: haslIndicator cd:population_male;

dcterms:date ?year;

sdmx—dimension:refArea ?city ;

sdmx—measure:obsValue ?population_male ;
cd:estimatedRMSE ?population_male_error .

?population_female_obs gb:dataSet globalcube:global—cube—ds;
cd: hasIndicator cd:population_female ;

dcterms:date ?year;

sdmx—dimension:refArea ?city ;

sdmx—measure:obsValue ?population_female ;
cd:estimatedRMSE ?population_female_error.

Provenance Propagation For every new derived observation we record the
provenance, i.e., each derived observation has a link to each input observa-
tion ?obsing, ..., 2obsiny and to the rule or equation used for the computa-
tion ?equation. Firstly, this provenance information provides transparency:
we know precisely how a derived observation was computed. Secondly, we
use the provenance information during the derivation process to ensure ter-
mination. Furthermore, we record the time of the rule application and the
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2017-01-15T12:37:00

prov:generatedAtTime

ex:ob_/s123 prov:wasDerivedFrom:ex:Obsmg

prov:wasGeneratedBy

( ex:activity456 )

prov:qualifiedAssociation

(:_\ é ex:fred )
J prov:wasAssociatedWit -

prov:hadPlan

( ex:rule937 >

Figure 6.3: Example of PROV annotations generated by the QBE SPARQL INSERT query

agent, which could be the script or person responsible for the query creation.

? activity a prov: activity ;
prov: qualifiedAssociation [
a prov:Association ;
prov:agent cd:import.sh ;
prov:hadPlan <http:// citydata .wu.ac.at/ocdp/eurostat—rules#
€4c56a2955372924bde20c2944b2b28f3>] .

Figure 6.3 gives an example of a part of the derivation tree generated by
this rule head fragment.

Value Creation with BIND ~Several SPARQL variables used for the output ob-
servation need to be computed using variables from the input observations.
Most importantly, the output measure value has to be created using the func-
tion of the @B rule.

BIND(100.0*?population_female/?population_male AS ?value)

Several URIs have to be generated for the rule head. We use a Skolem
function to generate these URIs. The inputs of this Skolem function are the
1IRI of the QB rule rule, the input variables vari, ...varN and a string "_static_"
to differentiate the different variables in the head. We implement this Skolem

function with string concatenation and a hash function.

BIND(IRI (CONCAT(STR(rule) , MD5(CONCAT(STR(?var1), ..., STR(?varN))))) AS ?targetvar)

We have to generate two URIs: observation and PROV activity.

BIND(CONCAT("http://citydata.wu.ac.at/ocdp/eurostat—rules#", MD5(CONCAT("http://citydata.
wu.ac.at/ocdp/eurostat—rules#28f3",STR(?population_male_obs), STR(?
population_female_obs))))) AS ?skolem)

BIND(IRI (CONCAT(?skolem, "_obs")) AS ?obs)

BIND(IRI (CONCAT(?skolem, " _activity")) AS ? activity )

Furthermore we bind the current time to a variable to use in the proven-
ance part of the head: BIND(NOW() as ?now).
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Error Propagation When a target value is computed based on values with an
associated error, we also need an error estimate for the target value. The pro-
cedure to estimate an error for the new value is called error propagatione [Bev-
ington and Robinson 2003; Ku 1966]. In our use case we do not promise
precise statistical error quantifications, but just want to propagate an upper
bound of the error estimations of the inputs to the computed output value.
We chose a error propagation function which is simple to implement in stand-
ard spARQL. Other standard error propagation procedures, such as the ones
proposed by Bevington and Robinson [2003] and Ku [1966], require the com-
putation of square roots, which is not possible with standard spArQL. To this
end, we incorporate a relatively naive error propagation function which can
be adapted to more accurate estimations if necessary in the future. Most of
the standard error propagation methods, as for example presented by Beving-
ton and Robinson [2003] and Ku [1966], require the computation of square
roots, which SPARQL 1.1 does not support.3

The error values attached to the observations, for example from our pre-
dictions in the next chapter, intuitively characterise how far off, in absolute
numbers, the actual value is on average, from our prediction. To compute
a conservative estimate of how these errors “add up” when used in compu-
tations, we proceed as follows. Depending on the function f used for com-
puting the output value, the n input variables x, . . ., x, and their associated
indicators iy, .. .,i,, we denote by ey,...,e, the errors for these indicators.
In Table 6.1 we define the propagated error (pe) of a computed observation,
recursively over the operator tree of the function term expr = f(x,...xp).
Intuitively, we assume here the following: if the real value xlf for the indic-
ator i; lie e; away—i.e., the estimated error above (x; = x; + ¢;) or below
(x] = x; — e;)— from the predicted value x;, we intend to estimate how much
off would a value computed from these predicted values maximally be; here,
const denotes a constant value and a, b are sub-expressions. Furthermore we
assume that the error e; is always less than the observed value x;.

If now, for an equation xy = f(xy, ... x,), the propagated estimated error
pe(f(x1,...x,)) is smaller than the so far estimated error e for indicator if
then we assume it potentially pays off to replace the predicted value so far
with the newly computed value by the rule corresponding to the equation.

To cater for rounding errors during the computation we add a small € of

Table 6.1: Computing the propagated error (pe) for a given expression (expr)

expr pe(expr)
const 0

Xi Ti
a+b pe(a) + pe(b)
a-b pe(a) + pe(b)

a/b (la| + pe(a))/(|b| - pe(b)) — a/b
axb (la| +pe(a)) = (|b| + pe(b)) —axb

3 To remain compatible with the
SPARQL 1.1 specification, we avoid
using implementation-specific
extension functions, which might
implement the square root
function.
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4 That is, we add a confidence
threshold that can be adapted,
based on the confidence in the
respective error propagation
function, in order to only
materialise new computed
observations if we expect a
significant improvement

0.0001 to the error estimate. Additionally, this € punishes each rule applic-
ation and thus enables quicker termination later. Eventually, the following
BIND expression will be generated to compute the propagated error as defined
by pe and assign it to the corresponding variable used in the head of the rule.
BIND((ABS(100.0)+0.0) *(ABS(?population_female)+?population_female_error)*1.0/ (ABS(?

population_male)—?population_male_error)—100.0*?population_female*1.0/?
population_male + 0.0001 as ?error)

Termination So far we introduced triple patterns and BIND expressions into
the rule body. As remarked above, the BIND expressions implement Skolem
functions and thus avoid duplicating the same output observations over and
over again, i.e., the generated sPARQL INSERT queries are idempotent. We now
give two different termination conditions to ensure termination of the QB
rules program.

To ensure termination of the whole sPARQL INSERT rule program, we use
a similar termination condition as defined in Chapter 4: we block the repeated
application of the same rule to derive a particular observation. With the prov
annotations, in fact, we create an equation-observation dependency graph.
Given an observation o, a SPARQL path pattern o prov:wasDerivedFrom™ o’ re-
turns all the observations o’ transitively used in the computation of 0. Further-
more, the SPARQL path pattern o prov:wasDerivedFrom® / prov:wasGeneratedBy /
prov:qualifiedAssociation / prov:hadPlan r gives all the rules r which were trans-
itively used during the computation of o. So, in order to ensure termination,
we define that a QB rule r is only applicable to materialise an observation o if
r does not occur in the result of that path expression.

In the sPARQL INSERT query we can implement this condition by adding
one of the following patterns for each input observation ?i to the WHERE
clause, where r is the 1r1 of the rule (or equation) itself.

FILTER NOT EXISTS {

?i prov:wasDerivedFrom*/prov:wasGeneratedBy/prov:qualifiedAssociation/prov:hadPlan/prov:
wasDerivedFrom? r}

In the worst case, the evaluation will be terminated by this condition after
applying each rule n times, where n is the number of QB rules in the system,
because after applying each rule once for the derivation of a single observa-
tion, no rule can be applicable anymore. An example of this worst case would
be a chain of QB rules where e; = e;1; and 0 < i < n and a single given obser-
vation for eg.

Another termination condition is based on the error propagation function.
Intuitively, the condition ensures that an observation o from a computation is
only materialised if no observation o’ exists that (i) shares the same dimension
values and (ii) has a lower or comparably low error estimate.

?0obsa gb:dataSet globalcube:global—cube—ds;

dcterms:date ?year;
sdmx—dimension:refArea city ;
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cd: hasIndicator cd:women_per_100_men;
sdmx—dimension:sex ?sex ;

estatwrap:unit ?unit ;
sdmx—dimension:age ?age ;
cd:estimatedRMSE ?errora .

FILTER(? errora <= ?error * CT)

Here, the constant factor CT is a value greater than or equal to 1, that de-
termines a confidence threshold of how much improvement with respect to
the estimated error is required to confidently “fire” the computation of a new
observation. Thus, we materialise only observations that we expect to be sig-
nificantly (i.e., by a factor of CT) better with respect to error estimates. Since
for any reasonable error propagation function the error estimates tend to in-
crease with each rule application, consequently, together the two termination
conditions can lead to faster termination.

For our naive error propagation function, CT = 30.0 turned out to be a
reasonable choice, cf. the evaluation results in Section 7.3. Choosing CT = 1
would require an error propagation function with very high confidence, i.e.,
that never estimates a too low error, which we cannot guarantee for our naive
estimation function.>

WE NOTE HERE that we really need both termination conditions, since re-
lying on error estimates alone would need to ensure that the error propaga-
tion “converges” in the sense that application of rules does not decrease error
rates. Our simple method for error propagation — in connection with cyclic
rule application—does not guarantee this as demonstrated by the following,
simple example:

Example 6.5. For two indicators i and j let two equations be i = j/2 and
J = i/2. Essentially, this boils down to the (cyclic) equation i = i/4 where—in

each application—we would derive smaller error estimates. o

While this example is quite obviously incoherent—in the sense of rules being
cyclic in terms of the rule dependency graph defined in Definition 4.10, we
still see that with cyclic application of rules the convergence of error rates
cannot be ensured in general. In practice such incoherent systems of equa-
tions are hardly useful, however the first termination condition would still
serve its purpose of ensuring termination.

Example 6.6. Taking the observations in rows 1 and 2 of Table 6.2 we can
compute the “No. of bed-places in tourist accommodation establishments”
for Bolzano 2010 as 2434.5 with an RMSE (computed with the propagated
error function pe) of 56.6 (row 3). The QBE observation of row 3 is classified
as “better” than the best predicted observation (row 4) because of the RMSE
comparison with respect to the confidence threshold: 56.6 - 30 < 3228.8.

Similarly, the observations from row 5 and 6 are used by the QB equation

5 Note that this has also been the
reason why we introduced the
factor CT, as the earlier simpler
condition FILTER(?errora <= ?error)
produced too many
over-optimistic—and in fact
worse—observations.
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6 http://citydata.wu.ac.at/ocdp/
eurostat-equations.rdf

7 http://citydata.wu.ac.at/ocdp/
eurostat-rules.rdf

Table 6.2: Example data for Bolzano in the year 2010

Source Indicator Value Error
Crawl (UN) Population 103 582.0 0.0
Prediction No. of available beds per 100 residents 23.5 0.55
QBE No. of bed-places in tourist accomm. est. 2434.5 56.6
Prediction No. of bed-places in tourist accomm. est. 1490.5 3228.8
Crawl (UN) Population male 49 570.0 0.0
Prediction Population female 54 836.2 7044.0
QBE Women per 100 men 110.6 14.3
Crawl Women per 100 men 109.0 0.0

of the running example to compute the observation in row 7. Since there
already exists an observation from the crawl with a better RMSE (row 8), the
computed QBE observation will be ignored in this case. O

6.4 Implementation of QB Equations in the OCDP

As described in Section 6.3, we compile QBEs into a semantically equivalent
set of rules. Usually there are two strategies for query answering in rule based
knowledge bases: forward or backward chaining. For the ocpp we decided to
implement a forward-chaining approach to enrich the global data cube with
the newly inferred observations. Forward-chaining approaches materialise as
much as possible, thus allowing faster query evaluation times. On the other
hand, forward-chaining approaches require more memory or disk space and
updates lead to re-materialisation. For the ocpp the space requirements are
manageable and updates are infrequent.

Our forward-chaining implementation approach relies on the iterative
application of sPARQL INSERT queries (which implement the rules). Overall,
QBEs infer and persist new observations in three steps: (Normalisation) con-
vert all QBEs to QB rules, (Rule conversion) for each QB rule we create a SPAR-
QL query and (Query evaluation) iteratively evaluate the constructed SPARQL
INSERT queries until a fixpoint is reached (that is, no better observations can
be derived).

Normalisation As described in the semantics definition above, in this first
step we convert QBEs to QB rules. The algorithm in Algorithm 6.1 already
outlines our implementation. We implemented the algorithm using Python
2.7 and the libraries rdflib for RDF/SPARQL processing and sympy providing the
solve function to algebraically solve an equation for a variable. The Python
script reads the QBEs from an RDF file containing the QBEs,® converts them
to @B rules and publishes them again as Linked Data’ and in the triple store.
This normalisation step could also be implemented by standard RDF-to-RDF
tools such as xsPARQL [Bischof, Decker et al. 2012].
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6.5 RELATED WORK

Creating SPARQL Queries We create one SPARQL INSERT query for each @B
rule. The listing in Appendix C gives a complete example of the SPARQL
INSERT query resulting from converting one of the @B rules. Due to a serious
performance problem with SPARQL INSERT queries applied on the Virtuoso
triple store in a preliminary evaluation, we used SPARQL CONSTRUCT queries
instead, and load the resulting triples into the triple store afterwards. The
conversion from QB rules to sSPARQL CONSTRUCT queries is analogous to the
algorithm described in Section 6.3.2 above to convert a QB rule to a SPARQL
INSERT query.

Evaluating Queries in Rule Engines In principle the rule engine naively eval-
uates SPARQL INSERT queries, or respectively, CONSTRUCT queries + re-loads,
over and over again until a fixpoint is reached. A fixpoint is reached when
the complete set of sPARQL INSERT queries is evaluated, and no new triple
was added.

Apart from the termination conditions described in Section 6.3.2 we en-
sure that the repeated application of a rule on the same observations does
not create any new triples by using Skolem constants instead of blank nodes
(see also discussion on idempotency above). Thus, in order to check whether
a fixpoint has been reached, it is enough to check in each iteration simply if
the overall number of triples has changed or not. So, for a naive implementa-
tion we could simply use a SPARQL query to count the number of triples and
compare it to the previous iteration.

Unfortunately, in our experiments, such a simple implementation solely
based on “onboard” means of the SPARQL engines turned out to be infeasible
due to performance reasons. Thus, for the time being, we resorted to just eval-
uating one iteration of all generated rules, in order to evaluate our conjecture
that rules improve our prediction results.

Eventually, we may need to resort to (offline) using a native rule engine.
Indeed, in practical applications, such rule/Datalog engines have shown to
perform better than recursive views implemented directly on top of databases,
for instance for computing RDFS closure, cf. lanni et al. [2009]. We leave this
to future work and resort, as mentioned, to a fixed number of iterations of
rule applications. We postpone the practical evaluation of QBESs to Section 7.3,
as part of the evaluation of the combined enrichment workflow.

6.5 Related Work

Modelling the actual numerical data and the structure of that data captures
only a part of the knowledge around statistical data that can be represented
in a machine-interpretable manner. Equations in particular are a rich source
of knowledge in statistical data. Lange [2013] gives an extensive overview of
representations of mathematical knowledge for the Semantic Web. We first
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8 http://www.openmath.org/cd/
contrib/cd/rdf.xhtml

cover representation of equations for layout purposes, and then cover repres-
entations that permit the interpretation of the formulas by machines.

Representations of mathematical knowledge not based on rDF, includ-
ing MathML [Carlisle and Miner 2014] and OpenMath [Buswell et al. 2004],
use xML for serialisation, focus more on a semantic representation of math-
ematical entities and are not directly useful for reasoning. Although Geo-
SPARQL [Perry and Herring 2012] uses MathML in XMLLiterals (a method
to embed XML content into RDF graphs not used in this thesis) and OpenMath
provides preliminary integration into RDF,? these representations are hard to
reuse for RDF tools and still are not suitable for an RDF QB setup.

The owL ontologies QuDT [Ralph Hodgson 2011], oM [Rijgersberg, As-
sem and Top 2013] and sWEET [Raskin and M. ]J. Pan 2005] provide means
to describe units and to some extent model conversion between these units,
but do not specify a concrete machinery to perform these conversions. Our
approach is orthogonal to these efforts in that it provides not only a model-
ling tool for unit conversions, but more general equations and also gives a
semantics to automatically infer new values.

Semantic Web rule languages and systems often implement numerical
functions—for example RIF uses numerical functions from XPath [Kay et al.
2010]. Other examples for rule languages and systems include swrL and
Apache Jena rules. Converting equations to rules naively can lead to a set
of recursive rules which often lead to non-termination even for one equation
alone (cf. Chapter 4).

To add reasoning over numbers, Description Logics were extended with
concrete domains (cf. Baader, Calvanese et al. [2007]). A concrete domain is
a domain separate from the usual instance domain of the model based se-
mantics. Examples for concrete domains include different sets of numbers or
strings. A specific concrete domain extension defines predicates over the con-
crete domain, e.g., greater than for numbers, or substring for strings. Often,
a limited set of functions (for computation) can be supplied. Racer [Haarslev
and Moller 2001] implements concrete domains for numbers. But computed
values are only used for reasoning tasks such as checking satisfiability or clas-
sification, but not available for instance retrieval or query evaluation. owL
Equations [Parsia and Uli Sattler 2012], a concrete domain extension carried
over to owL, allows comparing numerical values—even computed values;
however, the same limitations apply.

In general, frameworks using sPARQL as a rule language could also be
used to straightforwardly implement QBEs. Prominent examples are the SPAR-
QL Inferencing Notation [Knublauch, J. A. Hendler and Idehen 2011] and,
more recently, the (preliminary) advanced features of the Shapes Constraint
Language (sHacL) [Knublauch, Allemang and Steyskal 2017]. The conver-
sion from the equational knowledge, given as QBES, to SPARQL 1.1 queries
is needed nonetheless.


http://www.openmath.org/cd/contrib/cd/rdf.xhtml
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6.5 RELATED WORK

IN SUMMARY, QBEs define an RDF syntax to represent declarative equational
knowledge together with a rule-based semantics to compute new numerical
values for multidimensional RDF datasets.






Equations and Statistical Methods Combined

With 0B equations, as introduced in Chapter 6, we now have the necessary
means to exploit equational knowledge to compute missing values based on
the data presented in Chapter 5. However, QBEs depend on this equational
knowledge and cannot detect hidden patterns in large datasets. In this chapter
we now combine QBEs with statistical methods to produce more and higher
quality data. Parts of this chapter have been published as Bischof, Harth et al.
[2017] and Bischof, Martin et al. [2015a].

Section 7.1 reiterates and details the workflow components for enrich-
ment of our use case in Chapter 5. Section 7.2 explains the missing data pre-
diction process in more detail. Section 7.3 evaluates both the basic value im-
putation mechanism and the combination with QBEs and details our experi-
ence with the ocpp. Section 7.4 puts our approach in the context of related
work.

7.1 Introduction

In this section we detail the workflow as introduced in Section 5.2.2. The
workflow combines the QB equations specified in the last chapter, with stat-
istical methods, and proceeds in three steps as follows:

1. Materialisation of observations by application of QBEs on the raw data: in
a first step we load the integrated and linked observations from the data
integration step (4). Note here that each observation, in order to be con-
sidered in our rules, needs an cd:estimatedRMSE, which per default is set
to 0 for factual observations. However, due to the linking of different data
sources, we could potentially have several ambiguous observations for the
same city, year and indicator in this raw data already, e.g. two or more dif-
ferent population values from different data wrappers materialised in the
global cube. Let us say, we have for city C1 in the year 2017 three differ-
ent population values in three different factual observations from UNdata,
Eurostat and DBPEDIA, 1000 000, 980 000, an 1020 000 respectively. In
principle, we take no preference among sources, so we proceed as follows
in a preprocessing step: for such case we set the cd:estimatedRMSE to the
difference from the average of all available ambiguous values (for the same
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Figure 7.1: Prediction Workflow

indicator and city/year pair). That is, we set:

:obsUN estimatedRMSE 0.0 .
:obsEurostat estimatedRMSE 20000.0 .
:obsDbpedia estimatedRMSE 20000.0 .

After this preprocessing, we apply a first application of QB equations, in
which case—obviously—the value from the undata observation would be
preferred for any equation having cd:population as input indicator.

2. Materialisation of observations by statistical missing-value prediction: as
a second step, we apply enrichment by statistical regression methods and
computation of estimated RMsEs per indicator as described in Section 7.2;
these statistical regression methods can potentially benefit from derived
additional factual knowledge from the prior step.

3. Materialisation of further observations by re-application of QBEs: finally, us-
ing these predictions, we iteratively re-apply QBEs wherever we expect
(through error propagation) an improvement over the current RMSE by
using computed values rather than statistical predictions only.

We remark that one could alternatively re-iterate steps 3. and 2. as well, ie.,
by re-computing statistical models from step 2. based on the application of
equations in step 3. again, and so on. However, for instance due to imprecise-
ness of error estimations alone, this would be extremely prone to overfitting
and—as expected—showed a quality decrease than improvement in some pre-
liminary experiments we ran.

7.2 Imputation: Predicting Missing Values

As discussed in Sections 5.1 and 5.2.1, the filling in of missing values by reas-
onable predictions is a central requirement for the ocpp, since we discovered
a large number of missing values in our datasets (see Tables 5.1 and 5.2).

The prediction workflow is given in Figure 7.1. The initial step performs
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the loading, transposing and cleansing of the observations taken from the
global cube. Then, for each indicator, we impute all the missing values with
neutral values for the principal components analysis (pcA), and perform the
PCA on the new matrix, which creates the principal components (pc) that
are used as predictors. Next, the predictors are used for the model building
step using a basket of statistical Machine learning methods such as multiple
linear regression. Finally, we use the best model from the basket to fill in
all missing values in the original matrix and publish them using the Missing
Values wrapper.

In our earlier work [Bischof, Martin et al. 2015a], we evaluated two ap-
proaches to choose the predictors, one based on applying the base methods
to complete subsets in the data and the other based on pca. We only use
the pca-based approach, since, although it delivers slightly lower prediction
accuracy, it allows us to cope more robustly with the partially very sparse
data, such that we can also predict values for indicators that do not provide
sufficiently large subsets of complete, reliable predictors.

7.2.1 Base Methods

Our assumption is that every indicator has its own statistical distribution
(e.g., normal, exponential, or Poisson distribution), sparsity, and relationship
to other indicators. Hence, we aim to evaluate different regression methods
and choose the best fitting method to predict the missing values per indicator.
In order to find this best fitting method, we measure the prediction accuracy
by comparing the root mean-square error [Witten and Frank 2011] and the nor-
malised root mean-squared error (NRMSE) of every tested regression method.
For the predicted values [5 = (p1,...,pn) and the actual values a = (ay,...,an),

we define the two error measures as follows:

RMSE(d, p) = \/@

RMSE(d, p)

max(d) — min(a)

NRMSE(d, p) :

While the RMSE gives us an error estimate in the same unit as the values and
gives a better intuition of the error estimate of an indicator, the NRMSE allows
us to compare models for different indicators.

While in the field of Data Mining (pm) [Hastie, Tibshirani and Friedman
2009; Witten and Frank 2011; Han 2012] numerous regression methods for
missing value prediction were developed, we chose the following three stand-
ard methods for our evaluation due to their robustness and general perform-
ance:

K-Nearest-Neighbour Regression (KNN) is a wide-spread bm technique based
on using a distance function to a vector of predictors to determine the tar-
get values from the training instance space. As stated in Han [2012], the al-
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gorithm is simple, easily understandable and reasonably scalable. KNN can
be used in variants for clustering as well as regression.

Multiple Linear Regression (MLR) is a standard method to find a linear re-
lationship between a target and several predictor variables. The linear rela-
tionship can be expressed as a regression line through the data points. The
most common approach is ordinary least squares to measure and minimise
the cumulated distances [Han 2012].

Random Forest Decision Trees (RFD) involve the top-down segmentation of
the data into multiple smaller regions represented by a tree with decision and
leaf nodes. Each segmentation is based on splitting rules, which are tested on
a predictor. Decision nodes have branches for each value of the tested attrib-
ute and leaf nodes represent a decision on the numerical target. A random
forest is generated by a large number of trees, which are built according to a
random selection of attributes at each node. We use the algorithm introduced
by Breiman [Breiman 2001].

7.2.2  Principal Component Analysis

All three of base methods need a complete data matrix as a basis for calcu-
lating predictions for the respective target indicator column. Hence, we need
for each target indicator (to be predicted) a complete training data subset of
predictor indicators. However, as discussed by Bischof, Martin et al. [2015a],
when dealing with very sparse data, such complete subsets are very small and
would allow us to predict missing values only for a small number of indicat-
ors and cities. Instead, we use the regularised iterative pcA algorithm [Roweis
1997] which works also on incomplete datasets. It uses an iterative approach
where missing values are replaced by neutral values, with respect to the pca.
In general the pca is a dimensionality reduction technique which reduces a
high-dimensional input dataset (in our case the dimensions correspond to the
indicators) to a sorted list of principal components [Han 2012] (pcs) which are
subsequently used as predictors for the three base methods.

Before we can apply the pca and subsequently the base regression meth-
ods we need to pre-process and prepare the data from the global cube to bring
it into the form of a two-dimensional data matrix.

7.2.3 Preprocessing

Preprocessing starts with the extraction of the observations from the global
cube. Since the described standard bm methods cannot deal with the hier-
archical, multi-dimensional data of the global cube, we need to “flatten” the
data. For this, we pose the following sPARQL query, with an increasing year
range that is currently 2004-2017.
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SELECT ?city ?indicator ?year ?value
WHERE {

?0bs dcterms:date ?year.

?0bs sdmx—dimension:refArea ?city.
?0bs cd: hasIndicator ?indicator .
?0bs sdmx—measure:obsValue ?value.
FILTER(xsd: integer (?year) >= 2004)

}

The query flattens the multidimensional data to an input data table with
tuples of the form: (City, Indicator, Year, Value). Based on the initial table, we
perform a simple preprocessing as follows:

= Removing non-numerical columns and encode boolean values;

= Merging the dimensions year and city to one dimension, resulting in tuples
of the form (CityYear, Indicator, Value) that is, we further flatten the dataset

= Finally, we unfold the indicator and value dimension to a two-dimensional
data matrix with one row per city/year-pair and one column per indicator,
resulting in tuples of the form (CityYear, Valuey, . . ., Value,) for the list of
indicators (Indicator, . . ., Indicator,)

= From this large matrix, we delete columns (indicators) and rows (city/years)
which have a missing values ratio larger than 99%, that is, we remove city-
year pairs or indicators that have too many missing values to make reason-
able predictions, even when using pca.

Our initial dataset from merging Eurostat and UNSD contains 1961 cities with
875 indicators. By merging city and year and transposing the matrix we create
12 008 city/year rows. After deleting the cities/year-pairs and indicators with
a missing values ratio larger than 99%, we have the final matrix of 6 298 rows
(city/year) with 212 columns (indicators).

Note that the flattening approach and deletion of too sparse rows and
columns are generic and could obviously still be applied if we added more
data sources, but our experiments herein focus on the Eurostat and uNsD
data.

7.2.4 Prediction using PCA and the Base Regression Methods

Next, we are ready to perform pca on the data matrix created in the previous
subsection. That is, we impute all the missing values with neutral values for
the pca, according to the regularised iterative pcA algorithm described in [Ro-
weis 1997]. In more detail, the following steps are evaluated having an initial
dataset A; as a matrix and a predefined number of predictors n (we test this
approach also on different n’s):

1. Select the target indicator Ir;
2. Impute the missing values in A; using the regularised iterative pca al-
gorithm resulting in matrix A; and remove the column with Ir;
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Figure 7.2: Prediction results using pca

3. Perform the pca on the A, resulting in a matrix A; of a maximum of 8o
PCs;

4. Append the column of I7 to A; creating A4 and calculate the correlation
matrix Ac of A4 between It and the pcs;

5. Create the submatrix As of A4 on the selection of the pcs with the highest
absolute correlation coefficients and limit them by n;

6. Create submatrix Ag of As for validation by deleting rows with miss. values
for It;

7. Apply stratified tenfold cross-validation on As. which results in the best
performing model Mpes;;

8. Use the method for Mp,; to build a new model on As (not Ag) for predict-
ing the missing values of Ir.

7.2.5 Evaluation and Publishing

Figure 7.2 shows the results for the median NRMSE with an increasing num-
ber of predictors (selected from the 8o pcs) and compares the performance of
KNN, RFD, MLR and the selection of the best method. Clearly, for 8o predictors
MLR performs best with a median NRMSE of 0.56%, where KNN (resp. RFD) has
amedian NRMSE of 4.36% (resp. 5.27%). MLR is the only method that improves
steady up to 8o predictors. KNN provides good results for a lower number of
predictors, but starts flattening with 20 predictors. Contrary to MLR, the para-
meter of KNN and MLR have to be adjusted according to number of predictors,
hence optimising the number of clusters for kNN could improve the result.
The red line in Figure 7.2 shows the median NRMSE with the best regression
method chosen. Up to 60 predictors, the overall results improves by select-
ing the best performing method (for each indicator). The best median NRMSE
of 0.55% is reached with 8o predictors, where MLR is predominant and only
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5 out of 232 indicators are predicted by KkNN. We emphasise that, compared
to the result of our earlier experiments in [Bischof, Martin et al. 2015a], the
median NRMSE improved from 1.36% to 0.55%, which is mainly related to the
lower sparsity of the datasets.

Finally, we note again why we added pca, as opposed to attempting pre-
dictions based on complete subsets: in our preliminary evaluations, based on
the comparison of the two approaches in [Bischof, Martin et al. 2015a], by
picking the best performing regression method per indicator with ten pre-
dictors from the raw data based on complete subsets the median NRMSE was
0.25%. However, due to the low occurrence of complete subsets of reasonable
size for ten predictors, only one third of the missing values could be imputed
compared to using pcA. We acknowledge that this comes at a cost, as the me-
dian NRMSE goes up to 0.55% with 8o predictors, when using pca. However,
due to the sparsity in the data we decided to trade better completeness for
accuracy of the prediction.

We publish the predicted values created by the combination of pca and se-
lecting the best regression method per indicator, where we apply a threshold
of NRMSE of 20% as a cut off. This leads to no removal of any indicator in our
evaluation. Following our strategy of using statistical linked data wrappers,
we publish the predicted values using the Missing Values wrapper,’ which
provides a table of content, a structure definition and datasets that are cre-
ated for each prediction execution.

7.2.6  Workflow and Provenance

The full prediction workflow of our statistical prediction for missing values is
shown in Figure 7.1. The data preprocessing and transposing for the input data
matrix is written in Python, but all other steps such as pca, model building,
and model evaluation are developed in R [R Core Team 2017] using its readily
available “standard” packages (another advantage of relying on standard re-
gression methods). All the scripts and their description are available on the
website of the Missing Values wrapper. We conducted an evaluation of the
execution time on our Ubuntu Linux server with 2 cores, 2.6 GHz and 16 GB
of main memory. A single prediction run requires approximately 10 min for
each indicator (approximately 3 min. for each method) resulting in a total
time of about 35 hours for all indicators.

Looking back to Figure 7.1, one can see that the workflow branches after
four steps, where we distinguish two cases. In the case of no previous execu-
tions, we perform the full prediction steps as described in the previous section.
In the case of previous executions, we already have provenance information
available in our triple store, which describes the last execution and the related
model provenance information (for each indicator). The model provenance in-
cludes for each indicator the number of pcs, the number of predictors used
from these pcs, the chosen prediction base method, method parameters (i.e.,

1 http://citydata.ai.wu.ac.at/MV-
Predictions/
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the number of clusters in the kNN) and the NRMSE.

In summary, we keep provenance for our predictions on three levels:

= For each execution, we publish the median NRMSE over all indicators, num-
ber of predictors, creation date and the creation agent;

= For each indicator, we publish the model provenance data;

= For each predicted value published as a gb:Observation, we provide the over-
all absolute RMSE (using the predicate cd:estimatedRMSE) and the estimated
NRMSE (using the predicate cd:estimatedNormalizedRMSE). Further, we point
to better observations (published with an lower NRMSE) using the predic-
ate cd:preferredObservation which might occur if another approach such as
a different base method or QB equations (discussed in Chapter 6) improve

the predicted values.

For describing the model provenance, we use the MEx vocabulary, which is
lightweight compared to other vocabularies (i.e., bmop [Keet et al. 2015]) and
designed for exchanging machine learning metadata [Esteves et al. 2015]. We
use the MEx Algorithm layer to describe our prediction method and its para-
meter and the MEx Performance layer to describe the NrRMsE. Further, we de-
scribe each execution using attributes of MEx Execution.

Example 7.1. The following example gives an intuition into reading the data

about missing value predictions.

cvmv:predDS1 rdf:type qgb:DataSet .
cvmv:predDS1 prov:wasGeneratedBy cvmv:runP1.
cvmv:predDS1 dc: title "A3_2004—2016_ncp80_seed_100_pred_80" .

cvmv:runP1 rdf:type mexc:Execution ; prov: Activity

cvmv:runP1 cdmv:prediction\pc{}s 80 .

cvmv:runP1 mexp:rootMeanSquaredError 1.0705 .

cvmv:runP1 mexc:endsAt "2017—07—31T10:52:02Z" A xsd:dateTime .

cvmv:runP1 cvmv:hasPredicted cvmv:runP1_1.
cvmv:runP1_1 mexc:datasetColumn cd:no_bed—

places_in_tourist__accommodation_establishments .
cvmv:runP1_1 mexc:hasAlgorithmConfig mexa:Regression .
cvmv:runP1_1 cd:estimatedAbsoluteRMSE 3228.8726 .
cvmv:runP1_1 cd:estimatedNormalizedRMSE 1.78259 .
cvmv:runP1_1 cdmv:size 2737 .

cdmv:obsi rdf:type cd:PredictedObservation.

cdmv:obs1 cd:hasindicator no_bed—places_in_tourist__accommodation_establishments .
cdmv:obs1 sdmx—dimension:refArea dbr:Bolzano .

cdmv:obs1 dcterms:date "2010" .

cdmv:obs1 sdmx—measure:obsValue 1490.4485 .

cdmv:obsi cd:estimatedAbsoluteRMSE 3228.8726 .

cdmv:obs1 cd:estimatedNormalizedRMSE 1.78259 .

cdmv:obsi cd:preferredObservation cdmv:obsi .

cdmv:obs1 gb:dataSet cvmv:predDS1.

The example shows a gb:DataSet of predicted values generated by a run
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on 31 July 2017 using our pca-based approach. We show one predicted value
and its RMSEs for the indicator no_bed-places_in_tourist__accommodation_es-
tablishments of the city of Bolzano in the year 2010. The best method for this
indicator was MLR which is indicated by the triple: cvmv:runP1_1 mexc:hasAl-
gorithmConfig mexa:Regression.

The triple cdmv:obs1 cd:preferredObservation cdmv:obs1 states that there is
no better prediction available, i.e., that this observation is itself the preferred
(i.e., best) for the respective indicator for this city/year. O

In summary, while with the availability of more and new raw data we could
improve the prediction quality compared to Bischof, Martin et al. [2015a],
this is—essentially, apart from the more structured workflow and publication
using provenance information for all predictions—where we stopped missing
value prediction in our earlier work in Bischof, Martin et al. [2015a].

7.3 Evaluation

In this section, we summarise experiments we conducted to evaluate both the
performance of our crawls as well as the quality of enrichment.

The ocpp runs distributed over several components. The undata wrapper
is a server component that runs at WU Vienna and the Eurostat wrapper is
also a server component that runs in a cloud environment. The crawler and
rule engine is a client component that dereferences the seed 1ri1s, follows
links and performs the reasoning that lead to the unified global cube. The
resulting files are then inserted into the sPARQL endpoint. From that point
on, all further enrichment is carried out over the combined global cube via
the sPARQL endpoint.

In Section 7.3.1 we first describe in more detail the process that leads to
the global cube becoming accessible via the sPARQL endpoint. We then cover
in Section 7.3.2 the enrichment process, consisting of statistical missing value
prediction and calculating the values based on QBEs. The missing value pre-
diction is performed asynchronously on a workstation on a regular basis, fol-
lowing the regular crawls of the crawler.

7.3.1 Crawling and Global Cube Materialisation

The machine that runs the crawling and rule engine Linked Data-Fu is equip-
ped with two eight-core Intel Xeon E5-2670 CPUs running at 2.60GHz and
256 GB of main memory. Crawling and integration runs separately for Euro-
stat and undata. The result is one N-Quads file containing the Eurostat por-
tion of the global cube and one N-Quads file containing the undata portion
of the global cube. We separately run the “rapper” RDF parser over the files to
ensure that subsequent sPARQL loading steps do not fail with syntax errors.
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2 We wait 500 ms between
requests to not overload the server
providing data.

The crawling and rule application requires around 6 minutes for Euro-
stat and around 24 minutes for uNdata. For the 1666 379 observations of
Eurostat, 473 RDF documents containing 10 751759 triples are dereferenced
(567 MB). The rule application derives 1666 619 triples. For the 128 693 ob-
servations of undata, 4 505 RDF documents containing 1690 231 triples are
dereferenced (152 MB). The rule application derives 1002135 triples. While
accessing UNdata yields less triples than accessing Eurostat, the undata data
is distributed over many more files and requires more HTTP requests.” Thus,
the undata access takes much longer than the Eurostat access.

Loading the global cube into the Virtuoso sPARQL endpoint requires 190
seconds. Filtering and skolemisation takes 20 minutes.

7.3.2  Statistical Missing-Values-Prediction

In Section 7.2 we reported on evaluation of the missing values prediction in
detail. Recall that we perform pca to reduce the number of dimensions, which
allows us to impute all the missing values with neutral values for the pca and
then evaluate the quality of the predictions using different ( the respectively
best one per indicator) base statistical regression methods.

As for runtime performance, our current statistical prediction runs need
on a Ubuntu Linux server with 2 cores and 2.6 GHz approximately 35 hours
for all indicators and testing all base methods. The run time might grow
slightly with the number of indicators, hence we aim to optimise the pre-
dictions runs by using our model provenance information, and evaluate only
the best base method, which should reduce the runtime by factor three.

As mentioned in Section 7.2, we have identified two main goals for filling

in missing values:

1. It is important to build models which are able to predict many (preferably
all) missing values.

2. Second, the prediction accuracy of the models is essential, so that the Open
City Data Pipeline can fulfil its purpose of publishing high-quality, accur-
ate data and predictions.

Median prediction accuracy in our approach is 0.55%RMSE over all indicat-
ors for the years 2004—2017, which allows us to predict new 608 848 values
on top of the existing 693 684. Recall that despite the use of pca, this differ-
ence occurs, since we drop too sparse rows/columns in the data matrix before
PCA, in order to accept at an acceptably low overall median %RMSE, so we can-
not predict anything for very sparse areas of the data matrix. Still, while we
already discussed in Section 7.2 that the accuracy has improved considerably
since our prior work in [Bischof, Martin et al. 2015a], however, as mentioned
beforehand, our main goal was to improve these predictions further by the
combination with QBEs, i.e. to both improve the quality of predictions and
enable to predict more missing values overall.
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Next we quantify the results of the considered QBEs themselves and their
evaluation performance, and then report on the correctness of and improve-
ments by the combination of QBEs with statistical regression methods.

7.3.3 OB Equations

Section 6.4 described the implementation of QBEs in the ocpp. In this sec-
tion we give some results about the behaviour of the QBEs part of the ocpp
system3 and some evaluation of the QB evaluation themselves and how they
improve the results of the whole ocpp.

Normalisation The normalisation to generate QB rules from QBEs took 25
seconds to normalise 61 QBEs from Eurostat into 267 QB rules.# Appendix C
contains a complete example QBE from Eurostat and one of the normalised
0B rules.

Creating SPARQL Queries First we filter out 76 QB rules for which at least
one input variable matches no existing observation. Such rules can never de-
liver any results and evaluating them is thus needless. Virtuoso could gener-
ally not evaluate 44 @B rules which contain seven or more input variables.
Eventually we created 147 sPARQL CONSTRUCT queries in five seconds. Ap-
pendix C shows a complete example of a SPARQL CONSTRUCT query together
with the corresponding QB rule.

Evaluating Queries in Rule Engines This one iteration of evaluating all gener-
ated 147 SPARQL CONSTRUCT queries took 28 minutes (time-outs for 12 queries)
and inserted 1.8M observations (46M triples) into the global cube.

From the different data sources the ocpr crawler collects 991k obser-
vations. The statistical missing-values prediction returns 522k observations
which are better than any QBE observation (if existing). The QBEs return 230k
observations better than any other prediction or QBE observation (if exist-
ing); additionally, 232k new observations computed by QBEs were actually
not predictable at all (due to bad quality) with the statistical regression meth-
ods. Eventually the whole ocpr dataset contains 1975k observations.

Apart from these overall numbers, we provide more details on particular
aspects on the correctness of and improvements by the combination of stat-
istical regression methods and QBEs for predicting missing values in the rest

of this section.

7.3.4 Correctness of Generated QB Observations

Firstly, to show the correctness of the QBE approach on raw data (first step of
the workflow described in Section 7.1, we compared the observations deriv-
able by QBEs only from crawled observations with the corresponding crawled

3 for more details see
http://citydata.wu.ac.at/ocdp/import

4 the Eurostat indicator definition
for the population change over 1
year is the only indicator not
expressible in QBEs
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5 the indicator “Women per 100
men—aged 75 years and over” is
missing a factor 100

observations. We made the following observations: in the sources we cur-
rently consider, equations had already been applied in the raw data before
import, and thus applying them beforehand in Step 1 of the workflow in Sec-
tion 7.1 did not have a notable effect. This can mainly be explained by the
fact that our considered equations stem from Eurostat’s indicator definitions,
and therefore from within one dataset, where they are already pre-computed.
That is, in the cases of consistent input observations (no more than one ob-
servation per city-year-indicator combination) the QBEs computed consistent
results with respect to the crawl.

Notably, however, for the cases of inconsistent/ambiguous input observa-
tions in the raw data, the QBEs also possibly compute ambiguous resulting
observations. In fact, we discovered 48 643 such cases of inconsistent/ambigu-
ous observations, that is, multiple observations per city-year-indicator com-
bination. While again, as described in Section 7.1, Step 1, we do not resolve
these inconsistencies in the raw data, we “punish” them in the computation
by assigning inconsistent input observations with an estimated RMSE corres-
ponding to the deviation from the average above all the inconsistent obser-
vations for a single city-year-indicator combination.

We note that using QBEs could also be used to aid consistency checking,
for instance our experiments unveiled a missing constant factor in one of the
Eurostat indicator definitions> as well as wrongly mapped cities and indicat-
ors during the development process.

In general, it makes sense to evaluate the QBES based on the crawled data
and thus enrich the crawled dataset to achieve better results in the following
application of statistical regression methods. However, in our experiments
which focused in the UN and Eurostat datasets, the prior application had only
marginal effects: in our case almost half of the new observations (10178 of
26 452) that could be generated in this way were for the indicator “Women per
100 men”, because this is the only Eurostat indicator for which the UN dataset
contained both necessary base indicators (population male and population
female); the other cases could again be traced back to inconsistencies in the
source data.

7.3.5 Quality Increase of the Combination Approach

To test the quality increase of the combined method, we tested which ones
were the best observations, comparing statistically predicted observations,
with @B-equation-generated observation depending on the estimated RMSE
associated with each observation, with real factual observations. As described
in Chapter 6 a QBE observation is only computed if the estimated RMSE mul-
tiplied by the confidence threshold (CT) is smaller than the estimated RMSE
of any other corresponding observation. Through experimentation during
the development of the ocpp we found a confidence threshold of 30 being
a good compromise between data quality without sacrificing too many good
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observations. We got the same or a better RMsEs for 8o of the 82 tested indic-
ators: these 82 indicators are those for which overlapping indicators from the
statistical predictions and QBEs were available together with actual observed
values from the crawl.

We have summarised the results of this analysis in Table 7.1 for detailed
RMSEs for the predicted and the QBE observations of all 82 tested indicators.
For each indicator, the tables lists in the first three columns the numbers of
crawled, predicted and QBE computed predictions. The next three columns
list the accuracy in terms of actual RMSE (i.e. not estimated, but compar-
ing real existing observations with values generated through predictions or
through QBEs): we see here that, in combination the two methods performed
better or equal than statistical predictions alone in most cases (indicated in
bold face values in the “Combined” column), i.e., we got as mentioned above
the same or better RMSE for 8o out of the tested 82 indicators.

Finally, an important property of the combined method is how precise/ac-
curate the propagated error computation is, since this propagated estimated
error (RMSE in our case) is used to decide which observation is classified as
the best observation for a given city-year-indicator combination. We thus
model this as a binary classification task: for a fixed city-year-indicator com-
bination, given the corresponding prediction observation and the best obser-
vation generated by a QBE, both with error estimates, is the QBE observation
value nearer to the actual value than the predication observation value? In
this case we are more interested in a minimal number of false positives (QBE
observation wrongly selected as better) even at the cost of a higher number
of false negatives (better QBE observation wrongly not selected as better). Of
the usual measures to quantify the quality of classification tasks we thus are
mainly interested in precision. We get an average precision of 90.8% for a con-
fidence threshold of 30, while we miss quite some true positives (significantly
lower accuracy). See Table 7.1 for detailed results (“precision” and “accuracy”)
of all 82 indicators.

As we can demonstrate, even an incomplete materialisation of equations
allows us to predict a significant amount of new or improved observations,
that could not be predicted with equal accuracy solely with the statistical
methods.

7.4 Related Work

In this section, we explain how our work distinguishes itself from the related
work in the areas of modelling, integrating and querying of numerical data
using web technologies, of predicting/imputing missing values and of using
declarative knowledge for inferencing of numeric information.

The work of Santos et al. [2017] describes a methodology to describe city
data for automatic visualisation of indicators in a dashboard. The work is

125



Table 7.1: Evaluation results 82 indicators (for which crawled, predicted and QBE observations existed). The “Observation source” lists how many chosen best
observations which of the three sources contributed. The “RMsE ” columns give the RMsEs of Predictions and QBEs as well as the combined system. The quality
measures, especially the precision, give an indication how well the error propagation classified better observations. In the cases marked with a * no improvements
were observed by the QBEs, i.e., the statistical predictions were better than any possible QBE.

Observation source RMSE Quality measures
Indicator Crawled Prediction OBE Prediction QBE Combined Precision Accuracy
average size of households 3463 3194 0 0.04 0.08 0.04 * 0.63
crude birth rate per 1 0oo inhabitants 6739 1079 194 10.19 0.38 10.19 * 0.36
crude death rate per 1 0oo inhabitants 6417 1273 59 9.30 0.28 9.30 * 0.31
economically active population female 4517 3025 104 3083.12 9636.50 3083.12 * 0.72
economically active population male 4520 3025 104 2887.80 12171.77 2 887.80 * 0.78
economically active population total 4750 2765 108 4581.38 6596.52 4581.38 * 0.49
employment jobs in agriculture fishery nace rev 2 a 3244 3003 729 231.26 1044.50 228.71 1.00 0.45
employment jobs in construction nace rev 2 3447 2294 1317 775.68 1378.20 775.62 1.00 0.24
employment jobs in mining manufacturing energy nace rev 2 b-e 3442 2511 1105 2042.92 6692.59 2042.89 1.00 0.40
eu foreigners 4268 774 2341 2777.38 597.50 2746.81 0.91 0.29
eu foreigners as a proportion of population 4209 2840 306 0.65 0.42 0.65 * 0.25
foreign-born 2149 246 3961 18 408.69 3095.48 18 305.70 0.98 0.19
foreign-born as a proportion of population 2136 4074 134 2.94 1.52 2.94 * 0.43
foreigners 3290 389 2748 13 187.75 1394.98 13 176.48 0.98 0.22
foreigners as a proportion of population 3261 2914 238 1.65 0.89 1.65 * 0.38
households owning their own dwelling 2624 1449 3036 3998.24 50431.29 3998.24 * 0.26
households with children aged o to under 18 4023 967 2341 1952.82 6703.39 1952.77 1.00 0.14
infant mortality per year 5214 1383 1062 1.61 7.98 1.61 * 0.28
infant mortality rate per 1 0oo live births 5083 2046 418 0.58 1.01 0.58 * 0.42
lone parent households per 100 househ. with children aged o-17 3037 4042 107 0.73 3.33 0.73 * 0.78
lone parent private households with children aged o to under 18 3180 282 3774 674.46 341.52 674.46 1.00 0.13
lone pensioner above retirement age households 3609 2849 766 88.58 4590.84 88.58 * 0.26
nationals 5569 1122 1056 73 639.26 12052.11 73 355.72 1.00 0.22
nationals as a proportion of population 5531 1733 457 116.24 2.92 116.24 0.94 0.33

native-born 2159 350 3845 99 075.25 8725.38 99 075.25 0.18
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Observation source RMSE Quality measures
Indicator Crawled Prediction QBE Prediction QBE Combined Precision Accuracy
native-born as a proportion of population 2146 3999 197 23.54 2.84 23.54 * 0.58
no available beds per 1 0oo residents 3836 3437 30 57.56 397.42 57.56 * 0.63
no bed-places in tourist accomm. establishments 4226 3 3443 166966.67 3349.37 166 948.07 0.98 0.67
no children 0—4 in day care or school 4051 3113 503 579.63 522.03 579.62 0.91 0.47
no children 0-4 in day care publ and priv per 1 0oo children o—4 3323 3556 93 20.92 610.03 20.91 1.00 0.74
no cinema seats per 1000 residents 2283 3027 1336 33.37 1.82 33.37 1.00 0.15
no cinema seats total capacity 2 660 2035 2278 822.75 633.30 798.6 0.99 0.18
no deaths in road accidents 5574 668 1044 2.42 1.86 2.42 * 0.20
no households living in apartments 2115 1261 3369 6103.92 32588.96 6103.92 * 0.27
no households living in houses 2153 2027 2542 10502.07 24758.61  10498.78 0.88 0.26
no live births per year 6974 231 987 476.76 156.75 489.98 0.08 0.23
no private cars registered 4693 856 1814  43201.98 4490.18  43047.54 0.83 0.25
no registered cars per 1 0oo population 4549 2264 464 562.66 18.06 562.59 0.90 0.31
no tourist overnight stays in reg accomm. per year per resident 4821 2674 54 13.10 0.79 13.10 * 0.14
non-eu foreigners 4250 377 2730 7 884.07 1085.92 7858 0.97 0.23
non-eu foreigners as a proportion of population 4191 2902 236 1.40 0.35 1.40 * 0.31
one person households 4234 231 2982 3901.77  14048.54 3 900.09 1.00 0.14
people killed in road accidents per 10 ooo pop 5172 1765 37 0.33 0.02 0.33 * 0.19
persons unemployed female 5741 2105 7 734.71 387.00 734.71 * 0.28
persons unemployed male 5798 2054 808.36 342.44 807.88 1.00 0.22
persons unemployed total 5262 2402 14 450.51 523.96 450.51 * 0.51
population 17058 50 99081 746087.75 746119.20 746 256.30 0.19 0.34
population female 14181 580 4380 7668277 75971.54 76 682.77 * 0.50
population living in private househ. excl. institutional househ. 3602 2498 614 55048.78 25328.24 55048.78 * 0.25
population male 14 183 4838 122 71411.92  71769.93  71411.92 * 0.48
population on the 1st of january 10-14 years total 4914 272 1546 3831.38 656.61 3831.38 * 0.23
population on the 1st of january 25-34 years total 6416 276 666 13231.20 1064.67 13214.86 1.00 0.21
population on the 1st of january 35-44 years total 6461 194 724 7044.37 1020.55 7018.79 1.00 0.21
population on the 1st of january 45-54 years total 6435 366 551 6395.69 838.57 6352.97 1.00 0.20
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Observation source RMSE Quality measures
Indicator Crawled Prediction QBE Prediction QBE Combined Precision Accuracy
population on the 1st of january 5-9 years total 4 866 211 1629 4084.84 717.81 4084.84 * 0.22
population on the 1st of january 55-64 years total 8379 134 140 5172.41 808.54 5091.16 1.00 0.27
population on the 1st of january 65-74 years total 8 401 124 123 4 870.38 590.66 4837.58 1.00 0.25
population on the 1st of january 75 years and over female 6 860 1140 471071.80 22798.19 114272.33 0.72 0.71
population on the 1st of january 75 years and over male 6889 1129 * 1264578 279859.81 12 645.78 * 0.72
population on the 1st of january 75 years and over total 8413 55 195 5594.77 539.03 5577.07 1.00 0.20
private households excl. institutional households 5130 3 2468 6759.09  51025.85 6672.43 0.96 0.37
proportion households that are lone-pensioner households 3508 3700 * 0.08 0.12 0.08 * 0.48
proportion of employment in agriculture fishery 3172 3525 253 0.26 25.71 0.26 * 0.55
proportion of employment in construction nace revii f 3386 3550 98 0.35 7.71 0.35 * 0.75
proportion of employment in industries nace revi1 c-e 3384 3325 325 1.66 9.79 1.66 * 0.60
proportion of households living in apartments 1867 4494 265 1.97 4.67 1.97 * 0.67
proportion of households living in houses 1929 4214 482 1.80 3.08 1.80 * 0.55
proportion of households living in owned dwellings 2299 4308 333 1.75 21.97 1.75 * 0.67
proportion of households that are 1-person households 4128 3254 51 0.87 3.06 0.87 * 0.77
proportion of households that are lone-parent households 3065 4088 66 0.18 0.57 0.18 * 0.68
proportion of households with children aged o-17 3917 3345 54 0.52 2.20 0.52 * 0.79
proportion of population aged o—4 years 8328 313 0 0.08 1.00 0.08 * 0.91
proportion of population aged 10-14 years 4893 1817 1.16 0.13 1.16 * 0.62
proportion of population aged 15-19 years 8341 272 ) 0.10 6.72 0.10 * 0.94
proportion of population aged 20-24 years 8326 259 26 0.15 9.05 0.15 * 0.95
proportion of population aged 25-34 years 6337 771 190 10.25 0.47 10.25 * 0.35
proportion of population aged 35-44 years 6382 781 156 9.27 0.50 9.27 * 0.35
proportion of population aged 45-54 years 6356 672 264 10.43 0.48 10.43 * 0.24
proportion of population aged 5-9 years 4845 1847 0 1.15 0.14 1.15 * 0.65
proportion of population aged 65-74 years 8384 183 72 8.86 0.29 8.86 * 0.32
proportion of population aged 75 years and over 8396 198 60 6.71 0.25 6.71 * 0.36
proportion of total population aged 55-64 8362 208 74 13.61 0.40 13.61 * 0.28
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different from our work in several regards. Our work directly reuses w3sc
standardised vocabularies PROV and QB as well as common Linked Data wrap-
pers and crawlers and as such is more widely applicable. Our work makes
use of a pre-existing carefully handcrafted list of common statistical indic-
ators (city data ontology) that was mainly inspired from the Eurostat urban
audit but also takes into account other city data sources; the 150 37120:2014
used by Santos et al. [2017] only lists 100 roughly defined indicators whereas
urban audit uses over 200 indicators with available numbers and for some
of these indicators also provides computation formulas. The work of Santos
et al. [2017] focuses on automatic selection of suitable data for indicators us-
ing Prolog inferences and automatically selecting the right visualisation; this
was demonstrated with only one indicator bicycle "trips per station". Our
work instead focuses on the combination of declarative knowledge and ma-
chine learning for deriving/predicting new values from integrated datasets
and for that presents a widely-applicable data integration, enrichment and
publication pipeline evaluated on a set of more than 200 indicators.

7.4.1  Numerical Data in Databases

Siegel, Sciore and Rosenthal [1994] introduce the notion of semantic values—
numeric values accompanied by metadata for interpreting the value, e.g., the
unit—and propose conversion functions to facilitate the exchange of distrib-
uted datasets by heterogeneous information systems.

Diamantini, Potena and Storti [2013] suggest uniquely defining indicat-
ors (measures) as formulas, aggregation functions, semantics (mathematical
meaning) of the formula and recursive references to other indicators. They
use mathematical standards for describing the semantics of operations (Math-
ML, OpenMath) and use Prolog to reason about indicators, e.g., for equality or
consistency of indicators. In contrast, we focus on heterogeneities occurring
in terms of dimensions and members, and allow conversions and combina-
tions.

As a basis for sharing and integration of numerical data, xML is often
used [J. M. Pérez et al. 2008]. xmL standards such as XCube fulfil require-
ments for sharing of data cubes [Hiimmer, Bauer and Harde 2003] such as
the conceptual model of data cubes, the distinction of data (observations)
and metadata (dimensions, measures), a network-transportable data format,
support for linking and inclusion concepts, extensibility, conversion capabil-
ity and oLAP query functionality. Other advantages of xML include schema
definitions (xML Schema), there are data modification and query languages
for xMmL such as xsLT and XQuery, and there are widely-used xML schemas
for representing specific information, e.g., xBRL for financial reports, sDmx
for statistics, pp1° for research studies. Another xmL-based exchange stand-
ard for ETL transformations and data warehouse metadata is the Common
Warehouse Metamodel (cwM)7 by the Object Management Group (OMG).

6 http://www.ddialliance.org/

7 http://www.omg.org/spec/CWM/
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However, the integration of data across different standards is still an un-
resolved issue. cwM—but also other interfaces and protocols to share mul-
tidimensional datasets such as xmL for Analysis and oLE DB—lack a formal
definition making it more difficult to use such formalism as a basis for integra-
tion [Vassiliadis and Sellis 1999]. xML schemas are concerned with defining a
syntactically valid xML document representing some specific type of inform-
ation. Yet, xmML schemas do not describe domain models; without formal do-
main models, it is difficult to derive semantic relationships between elements
from different xmML schemas [Klein et al. 2001]. Often, the domain model for
an XML schema is represented in a semi-formal way using uML documents
and free text. In contrast, schemas described as an owL or RDFs ontology
such as @B have a formal domain model based on logics.

In theoretical data integration we distinguish global-as-view and local-
as-view approaches [Lenzerini 2002]. In the global-as-view (GAv) approach—
also known as source-based integration—the global schema is represented
in terms of the data sources. In the local-as-view (LAV) approach, sources are
defined as views over the global schema. We use the cav approach and define
the global cube in terms of single data cubes using the drill-across operation.
With Gav, queries over the global schema can easily be translated to queries
over the data sources [Cali, Calvanese et al. 2002]. The advantage of LAV is
that the global schema does not need to change with the addition of new
data sources. The advantage of GAv is that queries over the global schema
can easily be translated to queries over the data sources.

7.4.2  RDF Data Pipelines

Within the Semantic Web community there is extensive work around tripli-
fication and building data pipelines and Linked Data wrappers for publicly
available data sources on the web, where for instance the LoDp2 project has
created and promoted a whole stack of tools to support the life cycle of Linked
Data, i.e. creating maintainable and sustainable mappings/wrappers of exist-
ing data sources to RDF and Linked Data, a good overview is provided in the
book chapter by Ngomo et al. [2014] and Auer et al. [2012]. All this work could
likewise be viewed as an application of the classical eTL (Extract-Transform-
Load) [Golfarelli and Rizzi 2009] methodology extended to work on the web,
based on open standards and Linked Data principles [Berners-Lee 2006]. Our
work is not much different in this respect, with the difference that we apply
a tailored architecture for a set of selected sources around a focused topic
(city data), where we believe that a bespoke combination of rule-based reas-
oning methods in combination with statistical machine learning can provide
added value in terms of data enrichment. This is a key difference to the above-
mentioned methods that focus on entity linkage and object consolidation in
terms of semantic enrichment. However, this focused approach is also dif-
ferent from generic methods for reasoning over Linked Data on the web (cf.
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e.g. [Aidan Hogan 2011] and references therein for an overview), solely based
on owlL and RDFS which (except very basic application of owl:sameAs (for
consolidating different city identifiers across sources) and rdfs:subPropertyOf
reasoning (for combining overlapping base indicators occurring within dif-
ferent sources).

Other work tries to automatically derive new from existing data. Ambite
and Kapoor [2007] present Shim Services providing operations for accessing
remote data, integrating heterogeneous data and deriving new data. Work-
flows of operations are automatically created based on semantic descriptions
of operators. Subsumption reasoning is included to match inputs of services
to outputs of other services. To avoid the infinite execution of operations, a
limit is defined to the depth of nested operations of the same type. In con-
trast to the automatically constructed workflows, our pipeline consists of a
fixed set of processing steps. Instead of “shim services” that act as stand-alone
components accessible via the network, we base the computation on local for-
mulas and use a vocabulary to represent the formulas.

7.4.3 Data Modelling and Representation

Besides the QB vocabulary that we are using in this work, there are other
vocabularies available to publish raw or aggregated multidimensional data-
sets. For instance, Niiniméki and Niemi [2009] list various owL ontologies for
representing multidimensional datasets. Also, several lightweight ontologies
have been proposed, such as scovo [Hausenblas et al. 2009] and scovoLrink
[Vrandecié, Lange et al. 2010]. Other vocabularies for statistical data are the
DDI RDF Vocabularies,® several vocabularies inspired by the Data Document-
ation Initiative and the StatDCAT application profile® (StatDCAT-AP) to ex-
press in a structured way the metadata of statistical datasets which are cur-

rently published by the different agencies in the European Union.

In comparison to these approaches, we see several reasons for choosing
the @B vocabulary. @B, as a w3c recommendation, is an established standard
for aggregating and (re-)publishing statistical observations on the web, with
off-the-shelf tools to process and visualise QB data. QB’s wide adoption is
an important factor for data integration use cases, as sources already repres-
ented in QB can be integrated more easily than sources in other representa-
tions. Further, QB has shown applicability in various use cases [Kédmpgen and
Cyganiak 2013], and exhibits the necessary formality to allow efficient and
flexible integration and analysis of statistical datasets. The multidimensional
data model of @B allows explicit different dimension value combinations, e.g.,
_:obs cd:unit "km2". and _:obs dcterms:date "2010".,, which is important for in-
terpreting the semantics of values and for integration purposes [Vrande¢ic,
Lange et al. 2010].

8 http://www.ddialliance.org/
Specification/RDF

9 https://www.europeandataportal.
eu/de/content/statdcat-ap-wg-
virtual-meeting
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7.4.4 Missing Value Imputation

Several reference works describe procedures on handling missing values from
the perspective of statistics as well as from social sciences, e.g. cf. Buhi, Good-
son and Neilands [2008] and Switzer and Roth [2008]. The statistical offices,
for example Eurostat, already use these methods to impute missing values
in their datasets [Office for Official Publications of the European Communit-
ies 2004]. Since our integrated dataset showed high missing-value ratios (see
Tables 5.1 and 5.2), the statistical methods usually used for for missing-value
imputation are not applicable anymore. Instead we rely on pca, a method suc-
cessfully used in recommender systems, which are designed to handle high
missing-value ratios. For example, a method based on singular value decom-
position (svp), which is similar to pca [Shlens 2014], eventually won the Net-
flix Prize in 2009 [Koren 2009]. Within the Semantic Web community, a main
focus on value completion has been in the prediction of generic relations, and
mainly object relations (i.e. link-prediction) on the object level rather than on
numerical values, cf. Paulheim [2017] for an excellent survey on such meth-
ods. The usage of numerical values is a a rather recent topic in this respect.
Along these lines, but complementary to the present work, Neumaier, Um-
brich, Parreira et al. [2016] (as well as similar works referenced therein) have
discussed methods to assign bags of numerical values to property-class pairs
in knowledge graphs like DBPEDIA (tailored to finding out relations that, for
instance, a certain set of numbers could possibly be “population numbers of
cities in France”), but not specifically to complete/impute missing values. Our
method instead, uses standard, robust and well-known methods (KNN, linear
regression and random forest) for numerical missing value imputation based
on principle components [Roweis 1997]. This could be certainly refined to
more tailored methods in the future, for instance using time-series analysis;
indeed our predicted values, while reasonably realistic in the value ranges of-
ten show some non-realistic “jumps” when raw data for a certain indicator is
available over a certain sequence of years, but missing for only a few years in
between. Since the missing value imputation component in our architecture
is modularly extensible with new/refined methods, such refinements could

be added as future work.

IN suMMARY, with the combination of equational knowledge and statistical
methods we could improve missing value quality when compared to the two
methods alone.
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Summary and Discussion

More and more data interesting for data analysis is published on the Web
along Semantic Web standards and Linked Data principles. To make these
datasets usable, different problems of semantic heterogeneity have to be ad-
dressed. In this work we gave four contributions to approach these problems.
This chapter concludes this work by summarising and evaluating these con-
tributions before eventually giving an outlook of future work.

Section 8.1 summarises the four main contributions given in this work.
Section 8.2 evaluates the main contributions with respect to the research
questions stated in Chapter 1. Section 8.3 concludes this thesis be suggest-
ing interesting directions of future work, extending and complementing the
presented contributions.

8.1 Summary

This section summarises the main research contributions introduced in this
thesis: (i) schema-agnostic rewriting with SPARQL 1.1 property paths (Chap-
ter 3), (ii) RDF attribute equations (Chapter 4), (iii) QB equations (Chapter 6)
(iv) Combination of equational knowledge and statistical methods (Chapter 7).

8.1.1 Schema-Agnostic Query Rewriting

To the best of our knowledge, our work in Chapter 3 is the first to present a
query rewriting approach for ontology-based data access in owL QL that is
completely independent of the ontology. The underlying paradigm of schema-
agnostic query rewriting appears to be a promising approach that can be ap-
plied in many other settings. Indeed, two previous works, nsPARQL []. Pérez,
Arenas and Gutierrez 2010] and psPARQL [Alkhateeb 2008], independently
proposed query-based mechanisms for reasoning in RDFS. While these works
have not considered sPARQL 1.1, OWL QL, or arbitrary conjunctive queries,
they still share important underlying ideas. We think that a common name is
very useful to denote this approach to query rewriting.

With schema-agnostic query rewriting, we focused on laying the found-
ations for this new reasoning procedure. An important next step is to study
its practical implementation and optimization. Considering the size of some
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of the queries we generate, one would expect them to be challenging for RDF
stores. Future work will be concerned with developing further optimizations
that can be used in practical evaluations.

8.1.2 RDF Attribute Equations

In Chapter 4 we presented a novel approach to model mathematical equa-
tions as axioms in an ontology, along with a practical algorithm for query
answering using SPARQL over such enriched ontologies. To the best of our
knowledge, this is the first framework that combines ontological reasoning
in RDFS, inferencing about functional dependencies among attributes formu-
lated as generic equations, and query answering for SPARQL. Experimental
results compared to rule-based reasoning are encouraging. Given the increas-
ing amount of published numerical data in RDF on the emerging Web of data,
we strongly believe that this topic deserves increased attention within the

Semantic Web reasoning community.

8.1.3 OB Equations

In order to transfer the theoretic results of Chapter 4 to the real-world use
case of integrating statistical datasets about cities, introduced in detail in
Chapter 5, we introduced QB equations in Chapter 6. QB equations allow us
to express equational knowledge for multi-dimensional QB datasets and com-
pute new values or estimate missing values. QB equations reuse and extend
central definitions of RDF attribute equations from Chapter 4 and are con-
ceptually related to Complex Correspondences by Kdmpgen, Stadtmiiller and
Harth [2014]. We specifically provide an RDF syntax which allows expressing
equational knowledge, equations and rules, independent of a concrete dataset
description. Besides the automatic computation of new values, the rule-based
semantics provides error propagation, for computations on uncertain values,
and provenance tracking, already used in the termination condition. Termina-
tion is ensured by avoiding reapplication of an equation and aided by the sup-
plied propagated error. Evaluation of QB equations as part of the Open City
Data Pipeline in Section 7.3 showed that new values could be computed on
real-world datasets. Furthermore, when compared to statistical missing value
predictions alone, the combination of QB equations with statistical missing
value methods produced more, and higher quality, observations.

8.1.4 Equations and Statistical Methods Combined

In Chapter 5 we presented the Open City Data Pipeline, an extensible platform
for collecting, integrating, and enriching open city data from several data
sources including Eurostat and undata. We developed several components
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including wrappers, a data crawler, an ontology-based integration platform
and a missing value prediction module, detailed in Chapter 7, which relies on
both statistical regression methods and exploiting known equations with QB
equations: given we deal with very sparse datasets, the prediction (or, as it is
often referred to, imputation) of missing values is a crucial component.

As for the former, we predict target indicators from components calcu-
lated by Principal Component Analysis. We applied three basic regression
methods and selected the best performing one.

As for the latter, we showed that the predictions computed this way can
be further improved by exploiting equations, where we have estimated and
verified the assumption that this combination improves prediction accuracy
overall, in terms of the number of filled-in values and estimated errors.

The prediction values are fed back into our triple store and are accessible
via our sPARQL endpoint or Web UL Here, we additionally publish proven-
ance information including the used prediction methods and QB equations,
along with estimated prediction accuracy.

In the wrapper component, integrating cities and indicators for a new
dataset (often csv tables) is still a slow, manual, process, and needs custom
scripting. Particularly, entity recognition for cities can only partially be auto-
mated and needs manual adaptation for each wrapper. Also, mapping indic-
ators is still a largely manual process, where in the future, we plan to ap-
ply instance based mapping learning techniques used in ontology matching
(cf. Euzenat and Shvaiko [2013]). We emphasise here, that in fact such ap-
proaches could rely on and extend similar regression techniques as we used
for imputing missing values.

As for combining missing value prediction techniques and @B equations,
we improved the Open City Data Pipeline since Bischof, Martin et al. [2015a],
not only refining our methods, but also by proving the conjecture that the
more data we collect, the better the predictions actually get: by applying the
pcA-based prediction approach, using standard regression techniques with-
out customisation, we reach a good quality for predictions (overall NRMSE of
0.55%) and are able to fill large gaps of missing values, which can be further
improved by the combination with QB equations.

The republication of our enriched dataset as Statistical Linked Data [Kam-
pgen, O’'Riain and Harth 2012], using the standard B format shall allow com-
bining and integrating our dataset with other datasets of the Global Cube
[Kampgen, Stadtmiiller and Harth 2014].

8.2 Critical Assessment of Research Questions

After recapitulating our contributions, we assess these contributions with
respect to the motivating research questions given in Section 1.1.
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Research question 1. Can we produce and effectively use rewritings of SPARQL
queries which are independent of the ontology and avoid the exponential blowup
of standard query rewriting techniques?

We addressed research question 1 in Chapter 3 where we showed in a series
of formal proofs that we can rewrite SPARQL queries, independent of the on-
tology, for ontological querying: we showed that we can accommodate the
owL QL fragment of owL, with the exception of owl:SymmetricProperty which
can only be used in an alternative encoding. The resulting queries are, in-
dependent of the ontology, larger by a constant factor: type triple patterns
x rdfitype c are rewritten to a UNION of 5 BGPs, whereas other triple patterns
x p y for p € PRP are rewritten to a UNION of 3 BGPs. However, these BGPs
comprise complex sPARQL path expressions. Still, we showed in a practical
evaluation that schema-agnostic rewriting is a feasible approach for ontolo-
gical querying. In some cases, the approach could reach comparable query
evaluation times as the ontology-dependent rewriting system REQUIEM.

Research question 2. Can we express and effectively use equational knowledge
about numerical values of instances along with RDFs and owL to derive new
values?

In Chapters 4 and 6 we introduced two approaches to address research ques-
tion 2. The first approach, rRDF attribute equations, target numerical data rep-
resented directly by attributes or owL datatype properties. The second ap-
proach, QB equations, target a popular, more expressive multi-dimensional
data model to represent statistical data.

In Chapter 4 we defined RDF attribute equations, to express and use equa-
tional knowledge for computing new numerical values. We chose a light-
weight approach by extending the rRDFs fragment of DL-Lite with equations
by giving a suitable RDF encoding and a DL semantics. By implementing RDF
attribute equations in a backward-chaining approach, we showed in a prac-
tical use case experiment, that RDF attribute equations can effectively be used
to transparently compute numerical attributes during SPARQL query eval-
uation. Furthermore, we practically showed the combination of numerical
computations with RDFs inferencing. Incorporating more expressive OWL QL
reasoning remains part of future work. In a practical evaluation, our pro-
totype outperformed a general-purpose rule-based reasoners working also
in backward-chaining manner. Moreover, the compared backward-chaining
reasoner would only terminate either, if non-monotonic termination predic-
ates were used, or if the instance data was sufficiently restricted, i.e. the ABox
is data-coherent. As expected, a forward-chaining reasoner showed termina-
tion problems, due to rounding errors occurring during the computations.

We transferred and extended the idea of rRDF attribute equations by defin-
ing 0B equations on top of a more expressive, multi-dimensional, data model
in Chapter 6. We defined a concrete RDFS ontology to express equational
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knowledge for multi-dimensional data, specifically for data modelled with
the @B vocabulary, and defined a rule-based semantics to allow automatic
computation of new numerical values. In the evaluation in Section 7.3 we
showed effective usage of QB equations using real-world equations derived
from Eurostat indicator definitions. Furthermore, we used a forward-chaining
implementation which reused the same termination condition as RDF attrib-
ute equations. We could avoid the termination problems of the rule-based
forward-chaining reasoner, by exploiting the increased expressivity of the
multi-dimensional data model, to track the provenance of newly generated
instances and thus avoid repeated application of the same equations on de-
rived data. This increased expressivity also facilitated the definition of error
propagation for uncertain values. Ontological reasoning was not considered
explicitly, but could be delegated to reasoners already contained in standard
SPARQL engines.

Research question 3. Can we combine statistical inference with owL and equa-
tional knowledge to improve missing value imputation?

In Chapters 5 and 7 we address research question 3. We define a workflow
to combine equational knowledge, which is provided by QB equations, with
standard statistical methods for missing value imputation. We introduced our
approach to statistical missing value imputation by combining three comple-
mentary regression methods: KNN, MLR and RFD. We defined an iterative
approach to evaluate QB equations and statistical methods on a QB dataset.
We collected and integrated statistical city data from Eurostat and undata.
With this combined dataset, we evaluated our combined workflow to show
an increased quality and number of missing value predictions. Nonetheless,
for the combination of numerical inferences (in terms of statistical methods
and QB equations) with owL, using schema-agnostic rewriting, we still had
to leave this question partially open. We will discuss examples and possible
approaches to address the combined problem in Section 8.3.5 below.

8.3 Future Work

In this thesis we introduced complementary methods for enriching Linked
Data as a step for data preparation for data analysis. We now give an outlook
of different and—to us—interesting directions of future work grouped by the
main contributions of this work.

8.3.1 Schema-Agnostic Query Rewriting

While the queries we obtain by our schema-agnostic rewriting might be chal-
lenging for current RDF stores, large parts of the queries are fixed and can thus
be optimized for faster query evaluation. Our work thus reduces the problem
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of adding owL QL reasoning support to RDF stores to a query optimization
problem for sPARQL property paths. This can also guide future work in RDF
stores such as GraphDB (formerly owrim), which implement reasoning with
inference rules: rather than trying to materialize (part of) an infinite owL QL
chase [Bishop and Bojanov 2011], they could materialize (sub)query results to
obtain a sound and complete procedure. This provides completely new per-
spectives on the use of owL QL in areas that have hitherto been reserved to
OWL RL and RDFS.

8.3.2 RDF Attribute Equations

We observed during our experiments that single Web sources tend to be co-
herent in the values they report for a single city, thus data-incoherences, i.e.
ambiguous results in our queries for one city, typically stem from the combin-
ation of different sources considered for computing values through equations.

Moreover, in the realm of DL-Lite query rewriting, following the Perfect-
Ref algorithm [Calvanese, De Giacomo et al. 2007] which we base our ad-
aptation on, there has been a number of extensions and alternative query
rewriting techniques proposed [Pérez-Urbina, Motik and Horrocks 2010; Ros-
ati and Almatelli 2010; Rosati 2012; Kontchakov, Lutz et al. 2011; Gottlob and
Schwentick 2012] which could likewise serve as a basis for extensions of RDF
attribute equations. Another direction for further research is the extension
to a more expressive ontology language than DLEDFS. Whereas we have de-
liberately kept expressivity to a minimum for now, apart from further pi-
Lite fragments we are also particularly interested in lightweight extensions
of RDFs such as owL LD [Glimm, Adian Hogan et al. 2012] which should be
considered for future work.

Apart from query answering, this work opens up research in other reason-
ing tasks such as query containment of SPARQL queries over DLEDFS. While
containment and equivalence in SPARQL are a topic of active research [].
Pérez, Arenas and Gutierrez 2009; Schmidt, Meier and Lausen 2010; Chekol
et al. 2012], we note that containment, in our setting, depends not only on
the BGPs, but also on FILTERs. E.g., intuitively query Q4 in our setting would
be equivalent to the following query (assuming :population > 0):

SELECT ?C WHERE { ?C :populationFemale ?F .
?C :populationMale ?M . FILTER( ?F > ?M) }

While we leave closer investigation for future work, we note another pos-
sible connection to related work [Clément de Saint-Marcq et al. 2012] on ef-
ficient query answering under FILTER expression based in constraint-based
techniques.

Lastly, we would like to point out that our approach could be viewed
as more related to constraint-handling-rules [Frithwirth 2006] than to main-
stream semantic Web rules approaches such as swrL; we aim to further in-
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vestigate this.

8.3.3 OB Equations

While the implementation of QB equations in the Open City Data Pipeline
produced more and better observations, the resulting dataset potentially viol-
ates the QB integrity constraint 1c-12: “no duplicate observations” [Cyganiak,
Reynolds and Tennison 2014, §11]. While conformance with 1c-12 can be re-
stored easily by deleting all but the best of a set of duplicate observations
in a post-processing step, a revised semantics considering the integrity con-
straints would be desirable.

As mentioned in Section 7.3, QB equations cannot directly express equa-
tions for indicators such as “Population change over one year” because no
construct exists to express a relation between dimension members—in this
example the relation of one year to another. Currently such an equation could
be modelled by a set of n—1 @B equations and QB rules, where n is the number
of years, in the following manner (where y is a variable binding to each year
except the most recent):

Population change between y and y + 1 = Population(y + 1) — Population(i)

Population change over one year «<— Population change between y and y + 1

This unsatisfactory modelling, however, will result in n — 1 new intermediary
indicators, where n depends on the number of used dimension members. To
express such indicator equations satisfactorily, a standard means to repres-
ent at least the order of dimension members is necessary, in our example the
representation of the order of years. In general, an explicit RDF representa-
tion of levels of measurement, for example the nominal, ordinal, interval and
ratio levels introduced by Stevens [1946], for dimensions, could also be inter-
esting for other problems such as more automated visualisation of statistical
datasets (cf. [Thellmann et al. 2015]).

Another 9B modelling feature arising from multi-dimensional modelling
techniques used on oLAP data warehouses [Kimball and Ross 2013] and not
addressed by QB equations are dimension hierarchies. State-of-the-art oLAP
data warehouses allow the definition of aggregation operators in the dimen-
sion specification. However, aggregation operators are not included in the QB
specification [Cyganiak, Reynolds and Tennison 2014], although extensions
have been proposed, for example with QB401LAP [Varga et al. 2016]. QB equa-
tions could be extended to express such numerical aggregation operations
and thus relate members at different hierarchical levels.

The @B vocabulary defines several constructs to allow a more compact
representation of datasets, in particular slices to group related observations
together and abbreviated data cubes to avoid unnecessary redundancy in data-
set representation. Exploiting these features could lead to improved material-
ization and query performance. If query performance could be increased by
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1 https://www.cdp.net/en-
US/Pages/About-Us.aspx

these or similar measures, even a backward-chaining implementation could
become feasible (the materialisation times of the evaluation shown in Sec-
tion 7.3 suggests that backward-chaining is infeasible without significant ef-
ficiency improvements).

A practical analysis of real-world @B datasets collecting reused dimen-
sion and member 1RIs could unveil more real-world use case scenarios for 9B
equations. QB equations can be used, not only for unit conversions and com-
puting indicators, but also for evaluating linear regression models by using
0B rules (in Bischof, Martin et al. [2015a] we already trained linear regression
models on Open City Data Pipeline data).

Eventually, more expressive numerical functions and methods could be

necessary depending on the use case.

8.3.4 Equations and Statistical Methods Combined

Our future work includes extensions of the presented datasets, methods and
the system itself.

Currently, the data sources are strongly focused on European cities or
demographic data. Hence, we intend to integrate further national and inter-
national data sources, in particular the us Census Bureau statistics and the
Carbon Disclosure Project.

The us Census Bureau [U.S. Census Bureau 2007] offers two groups of
tabular datasets concerning us statistics: Table C-1to C-6 of [U.S. Census Bur-
eau 2007] cover the topics Area and Population, Crime and Civilian Labour
Force for cities larger than 20 ooo inhabitants; Table D-1to D-6 of [U.S. Census
Bureau 2007] cover Population, Education, Income and Poverty for locations
with 100 000 inhabitants and more. Contrary to the undata or Eurostat data-
sets, the us Census Bureau datasets have a low ratio of missing values ranging
from 0% to 5% for a total of 1267 cities. The data includes 21 indicators, e.g.,
population, crime, and unemployment rate.

The Carbon Disclosure Project (cDP) is an organisation based in the Uk
aiming at “using the power of measurement and information disclosure to
improve the management of environmental risk”.! The cDp cities project has
data collected on more than 200 cities worldwide. cDP cities offers a report-
ing platform for city governments using an online questionnaire covering
climate-related areas like Emissions, Governance, Climate risks, Opportunit-
ies, and Strategies.

In addition to the above, many cities operate dedicated open data portals.
The data from these individual city open data portals (e.g., New York, Vi-
enna) could be added and integrated. However, a significant effort would be
involved, as we would require a unified interface to many data portals. Either
we would have to write wrappers for every city’s portal, or standardisation
efforts on how cities publish data would have to succeed.

Apart from that, we could include sources such as DBPEDIA or Wikidata
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[Vrandeci¢ and Krétzsch 2014] in a more timely fashion, for example by re-
cording changes of values, through projects such as the pBPEDIA wayback
machine [Fernandez, Schneider and Umbrich 2015], to also collect historical
data from DBPEDIA.

Compared to [Bischof, Martin et al. 2015a] we completely refurbished our
crawling framework and architecture to automatically and regularly update
the integrated sources dynamically. We therefore expect new lessons learnt
from more regular updates; e.g.; Eurostat only recently updates its datasets
monthly, instead of annually,” which we expect to benefit from.

We also plan to connect our platform to the Linked Geo Data Knowledge
Base [Stadler et al. 2012] including OpenStreetMap (osm) data. Based on such
data, new indicators could be directly calculated, e.g., the size of public green
space by aggregating all the parks and public green areas tagged respect-
ively in osm. Some preliminary works on integrating indicators extracted
from osm with our Open City Data Pipeline have been presented by Posada-
Sanchez, Bischof and Polleres [2016].

As we integrate more sources and datasets, another future direction we
should pursue is to revisit cross-dataset predictions of missing values in more
detail,3 i.e., how predictions can be made from one data source to another.
This is particularly important, as typically different data sources have only a
handful (if any) overlapping indicators.

Furthermore, the integration of entities of different dimensions is an in-
teresting research topic. For example, although it seems spatial entities are
well defined, it turns out that different data providers use different defini-
tions; for example city boundaries for cities, inner city, metropolitan area or
larger urban zone/functional urban area [Office for Official Publications of
the European Communities 2004]. Prominent examples for such differently-
defined cities are Paris, London or Brussels. This similarly applies to indicator
definitions. While there exists a shared definition of basic indicators such as
resident population or area of a country or city, the same is not true for many
other basic or computed indicators. Economic indicators highlight this prob-
lem well: statistical offices define their own variant to measure economic im-
pact or living standards between countries (and cities). For example the gross
domestic product (GDP) can be computed using different approaches and can
depend on differently collected data (see Coyle [2014] on history and devel-
opment of the Gpp). In Bischof, Martin et al. [2015a] we tested robust lin-
ear regression to find similar indicators in different datasets. Although these
preliminary results were promising, more data and possibly more elaborate
methods are needed for high quality indicator mappings between datasets.

We further aim to extend our suite of base regression methods with other
well established methods. Promising candidates are Support Vector Machines
[Sanchez A 2003], Neural Networks, and Bayesian Generalised Linear Mod-
els [West, Harrison and Migon 1985].

Moreover, we plan to publish more detail on the best regression methods

2 cf. Section 8.1 at
http://ec.europa.eu/eurostat/cache/
metadata/de/urb_esms.htm: “From
2017 new data will be published the
first day of every month.”

3 Some preliminary work along
these lines have been presented
by Bischof, Martin et al. [2015a].
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Table 8.1: List of the subproperties of dul:hasLocation used by DBPEDIA, ordered des-
cending by number of triples

Property Triples Property Triples
dbo:birthPlace 836321 dbo:populationPlace 4308
dbo:country 734 006 dbo:crosses 3544
dbo:deathPlace 289 630 dbo:museum 3235
dbo:location 245009 dbo:countySeat 2986
dbo:nationality 126 855 dbo:hubAirport 2277
dbo:city 87306 dbo:homeport 1861
dbo:region 65026 dbo:targetAirport 1271
dbo:hometown 54 520 dbo:sourceRegion 1193
dbo:residence 46 689 dbo:nationalAffiliation 1120
dbo:state 42 580 dbo:placeOfBurial 1100
dbo:stateOfOrigin 37532 dbo:mouthRegion 1009
dbo:headquarter 271317 dbo:areaOfSearch 798
dbo:locatedInArea 24161 dbo:mouthCountry 671
dbo:locationCountry 21074 dbo:europeanAffiliation 614
dbo:locationCity 20 868 dbo:restingPlacePosition 538
dbo:restingPlace 16 806 dbo:borough 325
dbo:broadcastArea 151374 dbo:sourceConfluencePosition 245
dbo:place 13571 dbo:wineRegion 205
dbo:mouthPlace 13 468 dbo:sourceConfluencePlace 188
dbo:mouthMountain 13468 dbo:ruralMunicipality 177
dbo:sourceCountry 12 092 dbo:bodyDiscovered 143
dbo:mouthPosition 9948 dbo:map 115
dbo:arrondissement 9434 dbo:beltwayCity 72
dbo:county 8879 dbo:capitalPosition 67
dbo:canton 8 802 dbo:sourceConfluenceRegion 44
dbo:foundationPlace 8348 dbo:sourceConfluenceState 31
dbo:spokenlin 7828 dbo:genelocation 4
dbo:garrison 7272 dbo:capitalRegion 3
dbo:campus 6711 dbo:capitalCountry 2
dbo:sourceMountain 5515 dbo:capitalMountain 1
dbo:sourcePlace 5515 dbo:capitalPlace 1
dbo:sourcePosition 4535

per indicator as part of our ontology: so far, we only indicate the method and
NRMSE, whereas further details such as parameters used and regression mod-
els would be needed to reproduce and optimise our predictions. Ontologies
such as bmop [Keet et al. 2015] could serve as a starting point.

Furthermore, we are in the process of improving the user interface to
make the Web application easier to use. For this we investigate several librar-
ies for more advanced information visualisation.

8.3.5 Combining Schema-Agnostic Rewriting with Equations

We now discuss the combination of schema-agnostic rewriting with either
RDF attribute equations or QB equations.
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Combination with RDF attribute equations DBPEDIA defines 85 properties to
relate individuals, to spatial entities: for example dbo:country is used to re-
late cities to their containing countries, or dbo:birthPlace relates persons to
their birth place; see Table 8.1 for a list the 83 properties used by DBPEDIA.
All of these 85 DBPEDIA properties are subproperties of the external property
dul:hasLocation of the “DOLCE+DnS Ultralite” ontology.* It would be desir-
able to use this general dul:hasLocation property instead of the 85 more spe-
cific DBPEDIA properties to find the location of a spatial entity. However, the
DBPEDIA dataset does not contain the materialized triples for the superprop-
erty dul:hasLocation. A combination of schema-agnostic rewriting with rRDF
Attribute equations would make queries like the following possible: “Get the
population density of each populated place located in Austria. Use equational
knowledge if possible.” The corresponding SPARQL query could look like the
following:

SELECT ?place ?popdens

WHERE {

?place rdf:type dbo:PopulatedPlace ;
dbo:populationDensity ?popdens ;

dul:hasLocation dbr: Austria .

}

Getting the intended results for this query would indeed be possible, with the
contributions presented in this thesis, by a three step approach:

1. Apply the RDF attribute equations rewriting on the SPARQL query (using
the same example RDF attribute equation for population density used pre-
viously in Chapter 4).

2. Apply the schema-agnostic query rewriting on the result of step 1.

3. Evaluate the query of step 2 on the DBPEDIA SPARQL endpoint.

However, the resulting query would be long and complex (in terms of the
length and number of property path expressions).

A similar query, which might not be completely answerable by DBPEDIA
alone, could be for example “Give me the unemployment rate of all Us cities
with a democratic (or republic) mayor”. We see that this type of analytical
query is hard to answer completely, but can be very interesting for different
types of users. Therefore, a more integrated approach for effectively using
ontological and equational knowledge would be desirable.

Combination with QB Equations The generalised combination of schema-
agnostic rewriting with QB equations poses different additional challenges in
terms of an actual implementation. Schema-agnostic rewriting can naively
be combined with QB equations with two differences when compared to RDF
attribute equations:

1. The data “entailed” by QB equations are (physically) materialized and not
derived during query evaluation. Therefore, the QB observations and the

4 http:
//www.ontologydesignpatterns.org/
ont/dul/DUL.owl
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other background data, for example from DBPEDIA, must either be stored
in one triple store or sSPARQL federated queries (not discussed in this thesis)
must be used.

2. Because of materialization, the rewritten queries would often be shorter
than the queries generated by RDF attribute equations. However, we have
to pay a price for the more expressive data modelling features provided by
the @B vocabulary: QB datasets are harder to index by (general) triple store
than datatype properties, leading to potentially slower query response
times.

Addressing the first challenge means moving more data to a central location,
or using federated queries. Both alternatives might incur other problems such
as synchronizing updates or further performance hits. The second challenge
could partly be alleviated by splitting the data between a special-purpose
engine tailored to handle multi-dimensional data, and a triple store for the
background knowledge. Also, in this case, a more integrated approach could
be beneficial to query response times.

ALL THESE ASPECTS will impose further challenges when addressed in detail.
The experiences in this thesis have shown that many of these practical chal-
lenges also mean hitting limitations of existing SPARQL engines. We leave
them to others to explore, confident that the present thesis has opened the
door for various further investigations and follow-up works.

IN THE END we can only hope to have aided satistfying our hunger for know-
ledge and trust we do not drown in the flood of information.
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RDF Prefixes

In the following table we list the used prefixes and corresponding IRIs.

Prefix IRI

cd: http://citydata.wu.ac.at/ns#

cdmv: http://citydata.wu.ac.at/MV-Predictions/

dbr: http://dbpedia.org/resource/

dbo: http://dbpedia.org/ontology/

dcterms: http://purl.org/dc/terms/

dul: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
ee: http://citydata.wu.ac.at/ocdp/eurostat-rules
estatwrap: http://ontologycentral.com/2009/01/eurostat/ns#
eurostat: http://estatwrap.ontologycentral.com/

foaf: http://xmlns.com/foaf/0.1/

mexa: http://mex.aksw.org/mex-algo#

mexc: http://mex.aksw.org/mex-core#

mexp: http://mex.aksw.org/mex-perf/

owl: http://www.w3.0rg/2002/07 /owl#

prov: http://www.w3.0rg/ns/provi#

gb: http://purl.org/linked-data/cube#

gbe: http://citydata.wu.ac.at/qb-equations#

rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.0rg/2000/01/rdf-schema#

sdmx-dimension: http://purl.org/linked-data/sdmx/2009/dimension#
sdmx-measure:  http://purl.org/linked-data/sdmx/2009/measure#







Data Conversion, Linking and Integration

We now explain our approach for data conversion, linking and integration
used in the Open City Data Pipeline workflow as steps (1), (2) and (3) (see
Chapter 5). The approach is modular and extensible in the sense that every
new data source can be prepared for consideration separately and independ-
ently from other sources. The data integration pipeline can be re-run at any
time and thus allow for up-to-date data. Parts of this chapter have been pub-
lished as Bischof, Harth et al. [2017].

The approach consists of the following components: Appendix B.1 intro-
duces Linked Data wrappers that publish numerical data from various data
sources as Statistical Linked Data. Appendix B.2 describes semi-automatically
generated links between Statistical Linked Data from different sources. Ap-
pendix B.3 explains a rule-based Linked Data crawler to collect the relevant
data and creates the unified view (see Section 5.3).

B.1 Statistical Linked Data Wrappers

We use Linked Data as an interface to access and represent relevant data
sources (e.g., Eurostat or uNsD), which are originally published in tabular
form. The uniform Linked Data interface hides the specialities and structure
of the original data source. When the wrapper receives an HTTP request for
a particular dataset, it retrieves the data on-the-fly from the original source,
transforms the tabular representation to RDF, using the rRpF Data Cube vocab-
ulary, and returns the RDF representation of the original tabular data.

The wrappers provide a table of contents with links to all available data-
sets (as a collection of gb:DataSet triples), including the data structure defini-
tion of the datasets (as gb:DataStructureDefinition). The individual data points
are modelled as observations (as gb:Observation). The data structure definition
includes the available dimensions (as gb:dimension) and concept schemes (as
skos:ConceptScheme). We require a list of dataset and data structure defini-
tions to be able to crawl the data.

Each wrapper coins 1Rr1s for identifying the relevant resources, for ex-
ample, indicators or locations. We use 1RIs as unique identifiers for datasets,
dimensions and dimension values from different data sources.

The data sources identify indicators differently. For example, UNSD pro-
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1 http:
//estatwrap.ontologycentral.com/

2 http://estatwrap.ontologycentral.

com/id/urb_cpop1

3 http://citydata.wu.ac.at/Linked-
UNData/

4 http://citydata.wu.ac.at/Linked-
UNData/data/240

vides population numbers in dataset “240”, while Eurostat provides popula-
tion numbers in dataset “urb_cpop1”. We use the City Data Ontology to unify
the various indicator identifiers. Similarly, locations have varying identifiers
and sometimes varying names in the different data sources. For a relatively
clear-cut example consider the city of Vienna: unsbD uses city code 001170 and
label WIEN, whereas Eurostat uses code AT001C1 and label Wien. The wrappers
generate an IRI for every city out of the unique identifiers in the original
tabular data.

We use the following wrappers which provide access to the underlying
data source via a Linked Data interface:

Eurostat Wrapper The Eurostat wrapper' makes the Eurostat datasets, ori-
ginally available in tabular form at the Eurostat website, available as Linked
Data. Eurostat provides several dictionary files in spmx format; these files are
used to construct a list of dimension values in the data structure definition
and to generate IR1s for relevant entities (such as cities). All files are accessed
from the original Eurostat server once the wrapper receives a HTTP request
on the particular 1r1, ensuring that the provided rDF data is up-to-date. Popu-
lation data in the Eurostat wrapper? uses http://estatwrap.ontologycentral.com/
dic/indic_ur#DE1001V to identify “Population on the 1st of January, total”. The
indicator 1RI is mapped to indicator 1r1s from the City Data Ontology in a
subsequent step.

UNSD Wrapper The uNsD wrapper3 makes the uNsD datasets, originally
available in tabular form at the uNsSD website, available as Linked Data. The
UNSD wrapper provides a simple data structure definition describing the avail-
able dimensions and measure. In total, we cover 14 datasets ranging from pop-
ulation to housing data. Most indicators, e.g., population of the “240” data-
set, are directly mapped to an indicator 1r1 from the City Data Ontology,
namely http://citydata.wu.ac.at/ns#population.

B.2 Linking and Mapping Data

We start by explaining the required mappings for dimension 1r1s, followed
by explaining the required mappings for dimension value 1R1s. In general, the
data from the uNsD wrapper, due to the simpler representation in the original
data source, requires less mappings than the data from the Eurostat wrapper.

The two data sources exhibit the three dimensions for dcterms:date (year),
sdmx-dimension: refArea (city) and cd:haslndicator (indicator). We map the fol-
lowing dimension 1r1s of the global cube using rdfs:subPropertyOf:

= For the time dimension our wrappers directly use dcterms:date. The time
dimension hence does not require any further mapping.


http://estatwrap.ontologycentral.com/
http://estatwrap.ontologycentral.com/
http://estatwrap.ontologycentral.com/dic/indic_ur#DE1001V
http://estatwrap.ontologycentral.com/dic/indic_ur#DE1001V
http://estatwrap.ontologycentral.com/id/urb_cpop1
http://estatwrap.ontologycentral.com/id/urb_cpop1
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http://estatwrap.ontologycentral.com/dic/indic_ur#DE1001V
http://citydata.wu.ac.at/Linked-UNData/
http://citydata.wu.ac.at/Linked-UNData/
http://citydata.wu.ac.at/Linked-UNData/data/240
http://citydata.wu.ac.at/Linked-UNData/data/240
http://citydata.wu.ac.at/ns#population

B.2 LINKING AND MAPPING DATA

= For the geospatial dimension the UNSD wrapper uses sdmx-dimension:ref-
Area. The Eurostat wrapper uses different representations for the geospatial
dimension, such as eurostat:geo, eurostat:cities and eurostat:metroreg, which
we link to sdmx-dimension:refArea.

= For the indicator dimension we use cd:hasIndicator. Again, the UNSD wrap-
per directly uses that 1r1, while the data from the Eurostat wrapper requires
links from eurostat:indic_na and eurostat:indic_ur to cd:hasIndicator.

The Eurostat site provides a quite elaborate modelling of dimensions, code
lists and so on in spMs files. The datasets from the Eurostat wrapper use vari-
ous units such as :THS denoting "Thousand" and :COUNT denoting that the
number was computed from a count operation. However, all other dimen-
sions of datasets from Eurostat we consider in the pipeline, exhibit only one
single possible dimension value (e.g., :-THS), besides the three canonical di-
mensions of the global cube. Hence, we can assume that all other dimensions
and their values are part of the indicator.

The uNsD site has a simpler structure than Eurostat. The modelling of
different dimensions and code lists is less elaborate. Thus, for the unsp wrap-
per, we have ensured on the level of the published rDF that each dataset only
provides the canonical dimensions.

The two wrappers use different 1r1s for the same dimensions, for example
eurostat:geo and sdmx-dimension:refArea. The wrappers also use different 1Rr1s
for the same dimension values:

= For the time dimension values we use single years represented as String
values such as "2015".

= For the geospatial dimension values we link to DBpedia 1Rr1s from other rep-
resentations such as http://estatwrap.ontologycentral.com/dic/cities#AT001C1
and http://citydata.wu.ac.at/resource/40/0011704#000001.

= For the indicator dimension values we link to instances of cd:Indicator, such
as cd:population and cd:population_male. The uNsD wrapper directly uses
these values. For the 1r1s used in the data from the Eurostat wrapper, we
link to instances of cd:Indicator.

We now describe how we generated these links to map data from different
sources to the canonical representation, starting with the dimension and di-
mension value 1r1s. We manually created the rdfs:subPropertyOf triples con-
necting the Eurostat dimension 1r1s with our canonical 1Rr1s, and semi-auto-
matically generated the indicator 1r1s from an Excel sheet provided by Euro-
stat. We then created an RDF document with links from the newly generated
IR1s to the 1R1s of the Eurostat wrapper. We manually adapted the uNsD wrap-
per to use the newly generate 1Rr1s as indicator IRIs.

We choose to have a one-to-one (functional) mapping of every city from
our namespace to the English DBpedia 1r1, which in our re-published data is
encoded by owl:sameAs relations. We identify the matching DBpedia 1r1s for
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5 http://api.geonames.org/

6 http://wiki.planet-
data.eu/web/Datasets

multilingual city names and apply basic entity recognition, similar to Paul-
heim and Fiirnkranz [2012], with three steps using the city names from UNSD
data:

= Accessing the DBpedia resource directly and following possible redirects.
= Using the Geonames API°® to identify the resource.
= For the remaining cities, manually looked up the 1r1 on DBpedia.

The mappings of geospatial 1r1s from the Eurostat wrapper were done in a
similar fashion. All the mappings are published online as RDF documents that
are accessed during the crawling step.

B.3 Data Crawling and Integration

The overall RDF graph can be published and partitioned in different docu-
ments. Thus, to access the relevant RDF documents, the system has to resolve
the 1r1s of entities related to the dataset. Related entities are all instances of
@B-defined concepts that can be reached from the dataset 1r1 via QB-defined
properties. For example, from the 1r1 of a gb:DataSet instance, the instance of
gb:DataStructureDefinition can be reached via gb:structure. Similarly, instances
of gb:ComponentProperty (dimensions/measures) and skos:Concept (members)
can be reached via links.

Once all numeric data is available as Linked Data, we need to make sure to
collect all relevant data and metadata starting from a list of initial 1r1s. First,
the input to the crawling is a seed list of 1R1s of instances of gb:DataSets. One
example of a “registry” or “seed list” of dataset 1Ris is provided by the Plan-
etData wiki.® A seed list of such datasets is published as RDF and considered
as input to the crawling. We use two such seed lists: one with links to the rel-
evant instances of gb:DataSet from the UNsD wrapper, and another one with
links to the relevant instances of gb:DataSet from the Eurostat wrapper.

Then, Linked Data crawlers apply crawling strategies for RDF data where
they resolve the 1r1s in the seed list to collect further RDF and in turn resolve
a specific (sub-)set of contained 1r1s. An example Linked Data crawler is LD-
Spider [Isele et al. 2010], which uses a depth-first or breadth-first crawling
strategy for RDF data. Linked Data crawlers typically follow links without
considering the type.

A more directed approach would apply a crawling strategy that starts
with resolving and loading the 1Rr1s of gb:DataSets relevant for the task, and
then in turn resolves and loads instances of QB concepts that can be reached
from the dataset IR1s.

To specify how to collect Linked Data, we use the Linked Data-Fu lan-
guage [Stadtmiiller et al. 2013] in which rule-based link traversal can be spe-
cified. For instance, to retrieve data from all gb:DataSets, we define the follow-
ing rule:


http://api.geonames.org/
http://wiki.planet-data.eu/web/Datasets
http://wiki.planet-data.eu/web/Datasets
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{ ?ds rdf:type gb:DataSet.

} =

{

[1 http:mthd httpm:GET .
http:request) iri ?ds .

}.

The head of a rule corresponds to an update function of an internal graph
representation in that it describes an HTTP method that is to be applied to a
resource. In our example, the head of a rule applies a HTTP GET method to
the resource ?ds. The body of a rule corresponds to the condition in terms of
triple patterns that have to hold in the internal graph representation. In our
example, ?ds is defined as an instance of gb:DataSet.

Similarly, we retrieve instances of gb:DataStructureDefinition, gb:Compo-
nentSpecification, qb:DimensionProperty, gb:AttributeProperty, gb:MeasureProp-
erty, gb:Slice, gb:SliceKey and gb:ObservationGroup. Also, we access the list of
possible dimension values (based on gb:codeList in data structure definitions)
as well as each single dimension value. The only instances we do not resolve
are observations, since these are usually either modelled as blank nodes or
provided together with other relevant information with the RpF document
containing gb:DataSet or gb:Slice.

Crawling may include further information, e.g., rdfs:seeAlso links from rel-
evant entities or owl:sameAs links to equivalent 1r1s. Assuming that the num-
ber of related instances of QB concepts starting from a QB dataset is limited
and that links such as rdfs:seeAlso for further information are not crawled
without restriction (e.g., only from instances of QB concepts), the directed
crawling strategy terminates after a finite amount of steps.

As well as all the relevant data and metadata of gb:DataSets, we collect
the following further information:

= The City Data Ontology” (cDP ontology) that contains lists of common stat-
istical indicators about cities.

= The @B equations ontology® that contains the vocabulary to describe oB
equations and is further detailed in Chapter 6.

= The Eurostat QB equations?® that contains a set of QB equations generated
from formulas published by Eurostat as further detailed in Chapter 6.

= Background information'® that links indicators of Estatwrap to the cpp on-
tology.

= Background information providing additional owl:equivalentProperty links"
between common dimensions not already provided by the wrappers such
as between the different indicator dimension 1R1s estatwrap:indic_ur, cd:has-
Indicator and eurostat:indic_na.

Besides explicit information available in the RDF sources, we also materialise
implicit information to: (i) make querying over the triple store easier and
(i) automatically evaluate relevant QB and owL semantics. We execute the

7 http://citydata.wu.ac.at/ns

8 http://citydata.wu.ac.at/ocdp/qb-
equations

9 http://citydata.wu.ac.at/ocdp/
eurostat-equations

10 http://kalmar32.fzi.de/triples/
indicator-eurostat-links.nt

11 http://kalmar32.fzi.de/triples/
dimension-property-links.nt
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12 https://www.w3.org/TR/vocab-
data-cube/#normalize-algorithm
13 http://semanticweb.org/OWLLD/

14 https://linked-data-fu.github.io/

15 See
http://citydata.wu.ac.at/ocdp/import
for a collection of information
about the loading process.

QB normalisation algorithm' in case the datasets are abbreviated. Also, we
execute entailment rules'3 for owL and RDFs. However, we only enable those
normalisation and entailment rules that we expect to be evaluated quickly
and to provide sufficient benefit for querying.

For instance, we evaluate rules about the semantics of equality, e.g., sym-
metry and transitivity of owl:sameAs. We again describe the semantics of such
axioms using Linked Data-Fu. However, because we do not need the full ma-
terialisation of the equality, but only the canonical 1r1s, we define custom
rules that only generate the triples involving the canonical 1r1s. Thus, the
resulting dataset contains all the triples required to integrate and query the
canonical representation, but not more.

The crawling and integration is specified in several Linked Data-Fu pro-
grams. The programs are executed periodically using the Linked Data-Fu in-
terpreter* in version 0.9.12. The interpreter issues HTTP requests to access
the seed list, follows references to linked 1r1s, and applies the derivation rules
to materialise the inferences. The crawled and integrated data is then made
available for loading into a triple store. Before loading the observations into
the triple store we ensure for each observation that the correct dimension
IRIs and member IRIs are used, filter out non-numeric observation values and
mint a new observation IRI if a blank node is used. Finally, the filtered and
skolemised observations are loaded into an OpenLink Virtuoso triple store
(vo7) using the standard RDF bulk loading feature’s.


https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm
https://www.w3.org/TR/vocab-data-cube/#normalize-algorithm
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Complete Example of QB Equation Steps

An excerpt of the Eurostat indicator QB equations' in Turtle syntax as ex-
ample for a QB equation: the Eurostat indicator definition for “Women per
100 men” is represented as a QB equation as follows:

<http :// citydata .wu.ac.at/ocdp/eurostat—equations#women_per_100_men> a gbe:Equation;
gbe:variable [ a gbe:ObsSpecification ;
gbe: filter [ a gbe:DimSpecification ;
gb:dimension cd: haslIndicator ;
gbe:value cd:women_per_100_men];
gbe:variablename "?women_per_100_men"Aqbe:variableType ] ;
gbe:variable [ a gbe:ObsSpecification ;
gbe: filter [ a gbe:DimSpecification ;
gb:dimension cd:hasIndicator ;
gbe:value cd:population_male] ;
gbe:variablename "?population_male"**qbe:variableType ] ;
gbe:variable [ a gbe:ObsSpecification ;
gbe: filter [ a gbe:DimSpecification ;
gb:dimension cd:hasIndicator ;
gbe:value cd:population_female] ;
gbe:variablename "?population_female"AAqgbe:variableType ] ;
gbe:hasEquation "?women_per_100_men = ?population_female * 100 / ?population_male"
gbe:equationType.

In the first step this equation is normalised to the following three QB rules.?

ee:e4bb866b19a383a5c7ce88e853ff8bdad a gbe:Rule;
prov:wasDerivedFrom <http://citydata .wu.ac.at/ocdp/eurostat—equations#
women_per_100_men>;

gbe:structure globalcube:global—cube—dsd;

gbe:output [
gbe: filter _:b4bb866b19a383a5c7ce88e853ff8bdad ];

gbe:input [ gbe:variableName "?women_per_100_men"*qgbe:variableType;
gbe: filter _:b4c56a2955372924bde20c2944b2b28f3 J;

gbe:input [ gbe:variableName "?population_male"Aqgbe:variableType ;
gbe: filter _:b7177d26053419667c2b7deb4569a82b9 ];

gbe:hasFunction "?population_male*?women_per_100_men/100"*\gbe:functionType .

_:b4bb866b19a383a5c7ce88e853ff8bdad gbe:dimension cd:hasIndicator ; gbe:value cd:
population_female.

ee:e4c56a2955372924bde20c2944b2h28f3 a gbe:Rule ;
prov:wasDerivedFrom <http://citydata .wu.ac.at/ocdp/eurostat—equations#
women_per_100_men>;
gbe:structure globalcube:global—cube—dsd;
gbe:input [ gbe:variableName "?population_female"*Aqbe:variableType;

1 http://citydata.wu.ac.at/ocdp/
eurostat-equations

2 http://citydata.wu.ac.at/ocdp/
eurostat-rules
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gbe: filter _:b4bb866b19a383a5c7ce88e853ff8bdad ];
gbe:output [
gbe: filter _:b4c56a2955372924bde20c2944b2b28f3 ];
gbe:input [ gbe:variableName "?population_male"*gbe:variableType ;
gbe: filter _:b7177d26053419667c2b7deb4569a82b9 J;
gbe:hasFunction "100*?population_female/?population_male"*gbe:functionType .

:b4c56a2955372924bde20c2944b2b28f3 gbe:dimension cd:hasindicator ; gbe:value cd:
women_per_100_men.

ee:e7177d26053419667c2b7deb4569a82b9 a gbe:Rule;
prov:wasDerivedFrom <http://citydata .wu.ac.at/ocdp/eurostat—equations#
women_per_100_men>;

gbe:structure globalcube:global—cube—dsd;

gbe:input [ gbe:variableName "?population_female"qgbe:variableType ;
gbe: filter _:b4bb866b19a383a5c7ce88e853ff8bdad J;

gbe:input [ gbe:variableName "?women_per_100_men""gbe:variableType ;
gbe: filter _:b4c56a2955372924bde20c2944b2b28f3 ];

gbe:output [
gbe: filter _:b7177d26053419667c2b7deb4569a82b9 J;

gbe:hasFunction "100*?population_female/?women_per_100_men"*Agbe:functionType .

:b7177d26053419667c2b7deb4569a82b9 gbe:dimension cd:hasIndicator ; gbe:value cd:
population_male .

Next, the @B rules are converted to SPARQL INSERT queries. We give here the
SPARQL query for the second @B rule above, which computes the value for
the indicator women_per_100_men:

INSERT {

?0bs gb:dataSet globalcube:global—cube—ds;
cd: hasIndicator cd:women_per_100_men;
dcterms:publisher ?source ;
dcterms:date ?year ;
sdmx—dimension:refArea ?city ;
sdmx—measure:obsValue ?value;
prov:wasDerivedFrom ?population_male_obs, ?population_female_obs ;
prov:wasGeneratedBy ?activity ;
prov:generatedAtTime ?now ;
cd:estimatedRMSE ?error .

? activity a prov: activity ;
prov: qualifiedAssociation [
a prov:Association ;
prov:agent cd:import.sh ;
prov:hadPlan <http:// citydata .wu.ac.at/ocdp/eurostat—rules#
€4¢5602955372924bde20c2944b2b28f3> ] .
}
WHERE {{ SELECT DISTINCT * WHERE {
?population_male_obs gb:dataSet globalcube:global—cube—ds;
cd: hasIndicator cd:population_male;
dcterms:date ?year;
sdmx—dimension:refArea ?city ;
sdmx—measure:obsValue ?population_male ;
cd:estimatedRMSE ?population_male_error .

?population_female_obs gb:dataSet globalcube:global—cube—ds;



cd: hasindicator cd:population_female ;
dcterms:date ?year;

sdmx—dimension:refArea ?city ;
sdmx—measure:obsValue ?population_female;
cd:estimatedRMSE ?population_female_error .

BIND(CONCAT(REPLACE("http://citydata.wu.ac.at/ocdp/eurostat—rules#
e4¢56a2955372924bde20c2944b2b28f3", "e4c56a2955372924bde20c2944b2b28f3", MD5
(CONCAT("http://citydata.wu.ac.at/ocdp/eurostat—rules#
e4c56a2955372924bde20c2944b2b28f3",STR(?population_male_obs), STR(?
population_female_obs))))) AS ?skolem)

BIND(IRI (CONCAT(?skolem, "_source")) AS ?source)

BIND(IRI (CONCAT(?skolem, "_obs")) AS ?obs)

BIND(IRI (CONCAT(?skolem, " _activity")) AS ? activity )

BIND(NOW() as ?now)

## computation and variable assignment
BIND(100.0*?population_female*1.0/IF (? population_male != 0, ?population_male, "err") AS
?value)

## error propagation

BIND((ABS(100.0)+0.0) *(ABS(?population_female)+?population_female_error)*1.0/1F ((ABS(?
population_male)—?population_male_error) != 0.0, (ABS(?population_male)—?
population_male_error), "err")—100.0*?population_female*1.0/IF (? population_male =
0, ?population_male, "err") + 0.1 as ?error)

FILTER(? error > 0.0)

## 1st termination condition :
## there exists no better observation with the same dimension values
FILTER NOT EXISTS {

?0bsa gb:dataSet globalcube:global—cube—ds;
dcterms:date ?year;
sdmx—dimension:refArea ?city ;
cd: hasIndicator cd:women_per_100_men;
sdmx—dimension:sex ?sex ;
estatwrap:unit ?unit ;
sdmx—dimension:age ?age;
cd:estimatedRMSE ?errora .

FILTER(?errora < ?error) }

## 2nd termination condition :

## the same equation was not used for the computation of any source observation

FILTER NOT EXISTS { ?population_male_obs prov:wasDerivedFrom*/prov:wasGeneratedBy/
prov:qualifiedAssociation/prov:hadPlan/prov:wasDerivedFrom? <http://citydata.wu.ac.
at/ocdp/eurostat—rules#e4c56a2955372924bde20c2944b2b28f3> . }

FILTER NOT EXISTS { ?population_female_obs prov:wasDerivedFrom*/prov:wasGeneratedBy/
prov:qualifiedAssociation/prov:hadPlan/prov:wasDerivedFrom? <http://citydata.wu.ac.
at/ocdp/eurostat—rules#e4c56a2955372924bde20c2944b2b28f3> . }

by
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