
RDFS with Attribute Equations via SPARQL Rewriting

Stefan Bischof1,2 and Axel Polleres1

1 Siemens AG Österreich, Siemensstraße 90, 1210 Vienna, Austria
2 Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria

Abstract. In addition to taxonomic knowledge about concepts and properties
typically expressible in languages such as RDFS and OWL, implicit information in
an RDF graph may be likewise determined by arithmetic equations. The main use
case here is exploiting knowledge about functional dependencies among numerical
attributes expressible by means of such equations. While some of this knowledge
can be encoded in rule extensions to ontology languages, we provide an arguably
more flexible framework that treats attribute equations as first class citizens in
the ontology language. The combination of ontological reasoning and attribute
equations is realized by extending query rewriting techniques already successfully
applied for ontology languages such as (the DL-Lite-fragment of) RDFS or OWL,
respectively. We deploy this technique for rewriting SPARQL queries and discuss
the feasibility of alternative implementations, such as rule-based approaches.

1 Introduction

A wide range of literature has discussed completion of data represented in RDF with
implicit information through ontologies, mainly through taxonomic reasoning within a
hierarchy of concepts (classes) and roles (properties) using RDFS and OWL. However, a
lot of implicit knowledge within real world RDF data does not fall into this category:
a large amount of emerging RDF data is composed of numerical attribute-value pairs
assigned to resources which likewise contains a lot of implicit information, such as
functional dependencies between numerical attributes expressible in the form of simple
mathematical equations. These dependencies include unit conversions (e.g. between
Fahrenheit and Celsius), or functional dependencies, such as the population density that
can be computed from total population and area. Such numerical dependencies between
datatype properties are not expressible in standard ontology languages such as RDFS or
OWL. Rule based approaches also fail to encode such dependencies in the general case.

Example 1. Sample RDF data about cities, aggregated from sources such as DBPedia
or Eurostat,3 may contain data of various levels of completeness and using numerical
attributes based on different units like
:Jakarta :tempHighC 33 . :New_York :tempHighF 84 .
:New_York :population 8244910 . :New_York :area_mile2 468.5 .
:Vienna :population 1714142 . :Vienna :area_km2 414.6 .
:Vienna :populationDensity 4134

3 cf. http://dbpedia.org/, http://eurostat.linked-statistics.org/

http://dbpedia.org/
http://eurostat.linked-statistics.org/

Users familiar with SPARQL might expect to be able to ask for the population
density, or for places with temperatures over 90∘F with queries like
SELECT ?C ?P WHERE { ?C :populationDensity ?P } or
SELECT ?C WHERE { ?C :tempHighF ?TempF FILTER(?TempF > 90) }

However, implicit answers from mathematical knowledge such as the following equations
would not be returned by those queries:

tempHighC = (tempHighF − 32) · 5/9

populationDensity = population ÷ areakm2

One might ask why such equations cannot be directly added to the terminological
knowledge modeled in ontologies? We aim to show that it actually can; further, we
present an approach how to extend the inference machinery for SPARQL query answering
under ontologies to cater for such equations. Inspired by query rewriting algorithms for
query answering over DL-Lite [3], we show how similar ideas can be deployed to extend
a DL-Lite fragment covering the core of RDFS with so-called equation axioms.

We focus on query rewriting techniques rather than e.g. rule-based approaches such
as SWRL [13], where the equations from Example 1 could encoded as

tempHighC (𝑋, 𝐶) ⇐ tempHighF(𝑋, 𝐹), 𝐶 = (𝐹 − 32) · 5/9 (1)

populationDensity(𝑋, PD) ⇐ population(𝑋, 𝑃), areakm2 (𝑋, 𝐴), PD = 𝑃 ÷ 𝐴 (2)

given respective arithmetic built-in support in a SWRL reasoner. However, note that these
rules are not sufficient: (i) rule (1) is in the “wrong direction” for the query in Example 1,
that is, we would need different variants of the rule for converting from tempHighC to
tempHighF and vice versa; (ii) the above rules are not DL safe (i.e., we do not suffice
to bind values only to explicitly named individuals, as we want to compute new values)
which potentially leads to termination problems in rule-based approaches (and as we will
see it actually does in existing systems). Our approach addresses both these points in that
(i) equations are added as first class citizens to the ontology language, where variants are
considered directly in the semantics, (ii) the presented query rewriting algorithm always
terminates and returns finite answers; we also discuss reasonable completeness criteria.

In the remainder of this paper, we first define our ontology language DL𝐸
RDFS which

extends the RDFS fragment of DL-Lite by simple equations (Sect. 2). In Sect. 3 we define
SPARQL queries over DL𝐸

RDFS and present our query rewriting algorithm along with a
discussion of considerations on soundness and completeness. Alternative implementation
approaches with DL reasoners and rules are discussed briefly in Sect. 4, followed by the
discussion of a use case experiment in Sect. 5. We wrap up with a discussion of related
and future work as well as conclusions (Sects. 6 and 7).

2 Extending Description Logics by Equations

We herein define a simple, restricted form of arithmetic equations and extend a lightweight
fragment of DL-Lite by such equations.

Definition 1. Let {𝑥1, . . . , 𝑥𝑛} be a set of variables. A simple equation 𝐸 is an alge-
braic equation of the form 𝑥1 = 𝑓(𝑥2, . . . , 𝑥𝑛) such that 𝑓(𝑥2, . . . , 𝑥𝑛) is an arithmetic

expression over numerical constants and variables 𝑥2, . . . , 𝑥𝑛 where 𝑓 uses the elemen-
tary algebraic operators +, −, ·, ÷ and contains each 𝑥𝑖 exactly once. vars(𝐸) is the
set of variables {𝑥1, . . . , 𝑥𝑛} appearing in 𝐸.

That is, we allow non-polynomials for 𝑓 – since divisions are permitted – but do
not allow exponents (different from ±1) for any variable; such equations can be solved
uniquely for each 𝑥𝑖 by only applying elementary transformations, assuming that all
𝑥𝑗 for 𝑗 ̸= 𝑖 are known: i.e., for each 𝑥𝑖, such that 2 ≤ 𝑖 ≤ 𝑛, an equivalent equation
𝐸′ of the form 𝑥𝑖 = 𝑓 ′(𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) is uniquely determined. Note that
since each variable occurs only once, the standard procedure for solving single variable
equations can be used, we write solve(𝑥1 = 𝑓(𝑥2, . . . , 𝑥𝑛), 𝑥𝑖) to denote 𝐸′.4

2.1 The Description Logic DL𝐸
RDFS

When we talk about Description Logics (DL), we consider a fragment of DL-Lite𝒜 [18]
with basic concepts, existential quantification, attributes over concrete value domains,
role/attribute inclusions, and inverse roles which we extend by simple attribute equations.
We we call this fragment DL𝐸

RDFS , i.e., it is just expressive enough to capture (the DL
fragment of) the RDFS semantics [11] extended with equations. In contrast to DL-Lite𝒜,
DL𝐸

RDFS leaves out role functionality, as well as concept and role negation, and we
restrict ourselves to a single value domain for attributes, the set of rational numbers Q.5

Definition 2. Let 𝐴 be an atomic concept name, 𝑃 be an atomic role name, and 𝑈 be
an atomic attribute name. As usual, we assume the sets of atomic concept names, role
name, and attribute names to be disjoint. Then DL concept expressions are defined as
𝐶 ::= 𝐴 | ∃𝑃 | ∃𝑃 − | ∃𝑈

In the following, let 𝛤 be an infinite set of constant symbols (which, in the context
of RDF(S) essentially equates to the set 𝐼 of IRIs).

Definition 3. A DL𝐸
RDFS knowledge base (KB) 𝒦 = (𝒯 ,𝒜) consists of a finite set of

terminological axioms 𝒯 (TBox) and assertions𝒜 (ABox). For 𝐴, 𝑃𝑖, 𝑈𝑖 and 𝐶 denoting
atomic concepts, roles, attributes, and concept expressions, resp., 𝒯 can contain:

𝐶 ⊑ 𝐴 (concept inclusion axiom)
𝑃1 ⊑ 𝑃2 (role inclusion axiom)
𝑈1 ⊑ 𝑈2 (attribute inclusion axiom)
𝑈0 = 𝑓(𝑈1, . . . , 𝑈𝑛) (equation axiom)

A set of role (attribute, resp.) inclusion axioms is called a role hierarchy (attribute
hierarchy, resp.). For 𝑎, 𝑏 ∈ 𝛤 , and 𝑞 ∈ Q , an ABox is a set of concept assertions 𝐶(𝑎),
role assertions 𝑅(𝑎, 𝑏), and attribute assertions 𝑈(𝑎, 𝑞). Finally, by 𝛤𝒦 (and 𝛤𝐴, 𝛤𝑃 , 𝛤𝑈 ,
resp.), we denote the (finite) sets of constants from 𝛤 appearing in 𝒦 (as concepts, roles,
and attributes, resp.).

4 in analogy to notation used by computer algebra systems (such as Mathematica or Maxima)
5 Note that since we only consider this single type of attributes, we also do not introduce value-

domain expressions from [18]. Further, instead of 𝛿(𝑈) in [18] we just write ∃𝑈 .

Rows 1–6 of Table 1 show the obvious correspondence between DL𝐸
RDFS syntax and

the essential RDFS terminological vocabulary. As for line 7, we can encode equation
axioms in RDF by means of a new property definedByEquation and write the respective
arithmetic expressions 𝑓(𝑈1, . . . , 𝑈𝑛) as plain literals (instead of e.g. breaking down
the arithmetic expressions into RDF triples). ABox assertions are covered in rows 8–10,
where we note that we use datatype literals of the type owl:rational from OWL2 for
rational numbers (which however subsumes datatypes such as xsd:integer, xsd:decimal
more commonly used in real world RDF data).

As mentioned before in the context of Definition 1, we consider equations that result
from just applying elementary transformations as equivalent. In order to define the
semantics of equation axioms accordingly, we will make use of the following definition.

Definition 4. Let 𝐸 : 𝑈0 = 𝑓(𝑈1, . . . , 𝑈𝑛) be an equation axiom then, for any 𝑈𝑖 with
0 ≤ 𝑖 ≤ 𝑛 we call the equation axiom solve(𝐸, 𝑈𝑖) the 𝑈𝑖−variant of 𝐸.

Note that the DL defined herein encompasses the basic expressivity of RDFS (sub-
property, subclassOf, domain, range)6 and in fact, rather than talking about a restriction
of DL-Lite𝒜, we could also talk about an extension of DL-LiteRDFS [1].7

Definition 5 (Interpretation). An interpretation ℐ = ⟨𝛥ℐ , ·ℐ⟩ consists of a non-empty
set 𝛥ℐ called the object domain, and an interpretation function ·ℐ which maps

– each atomic concept 𝐴 to a subset of the domain 𝐴ℐ ⊆ 𝛥ℐ ,
– each atomic role 𝑃 to a binary relation over the domain 𝑅ℐ ⊆ 𝛥ℐ ×𝛥ℐ ,
– each attribute 𝑈 to a binary relation over the domain and the rational numbers

𝑈ℐ ⊆ 𝛥ℐ ×Q, and
– each element of 𝛤 to an element of 𝛥ℐ .

For concept descriptions the interpretation function is defined as follows:
– (∃𝑅)ℐ =

{︀
𝑥 ∈ 𝛥ℐ

⃒⃒
∃𝑦.(𝑥, 𝑦) ∈ 𝑅ℐ}︀

6 leaving out subtleties such as e.g. those arising from non-standard use [2] of the RDF vocabulary
7 DL-LiteRDFS actually also allows to write axioms of the form 𝑃1 ⊑ 𝑃 −

2 which we do not allow
since these in fact are beyond the basic expressivity of RDFS.

Table 1. DL𝐸
RDFS axioms in RDFS

DL𝐸
RDFS RDFS

1 𝐴1 ⊑ 𝐴2 A1 rdfs :subClassOf A2
2 ∃𝑃 ⊑ 𝐴 P rdfs :domain A
3 ∃𝑃 − ⊑ 𝐴 P rdfs : range A
4 ∃𝑈 ⊑ 𝐴 U rdfs :domain A
5 𝑃1 ⊑ 𝑃2 P1 rdfs :subPropertyOf P2
6 𝑈1 ⊑ 𝑈2 U1 rdfs :subPropertyOf U2
7 𝑈0 = 𝑓(𝑈1, . . . , 𝑈𝑛) U0 definedByEquation “f(U1, . . . , Un)”

8 𝐴(𝑥) x rdf : type A
9 𝑅(𝑥, 𝑦) x R y

10 𝑈(𝑥, 𝑞) x U "𝑞"̂̂ owl : rational

– (∃𝑅−)ℐ =
{︀

𝑦 ∈ 𝛥ℐ
⃒⃒
∃𝑥.(𝑥, 𝑦) ∈ 𝑅ℐ}︀

– (∃𝑈)ℐ =
{︀

𝑥 ∈ 𝛥ℐ
⃒⃒
∃𝑞 ∈ Q.(𝑥, 𝑞) ∈ 𝑈ℐ}︀

Definition 6 (Model). An interpretation ℐ satisfies an axiom of the form
– 𝐶 ⊑ 𝐴 if 𝐶ℐ ⊆ 𝐴ℐ

– 𝑃1 ⊑ 𝑃2 if 𝑃 ℐ
1 ⊆ 𝑃 ℐ

2
– 𝑈1 ⊑ 𝑈2 if 𝑈ℐ

1 ⊆ 𝑈ℐ
2

– 𝑈0 =𝑓(𝑈1, . . . , 𝑈𝑛) if
∀𝑥, 𝑦1, . . . , 𝑦𝑛(

⋀︀𝑛
𝑖=1(𝑥, 𝑦𝑖) ∈ 𝑈ℐ

𝑖) ∧ defined(𝑓(𝑈1/𝑦1, . . . , 𝑈𝑛/𝑦𝑛)
⇒ (𝑥, eval(𝑓(𝑈1/𝑦1, . . . , 𝑈𝑛/𝑦𝑛)) ∈ 𝑈ℐ

0
where, by eval(𝑓(𝑈1/𝑦1, . . . , 𝑈𝑛/𝑦𝑛)) we denote the actual value in Q from evaluating
the arithmetic expression 𝑓(𝑈1, . . . , 𝑈𝑛) after substituting each 𝑈𝑖 with 𝑦𝑖, and by
defined(𝑓(𝑈1/𝑦1, . . . , 𝑈𝑛/𝑦𝑛)) we denote that this value is actually defined (i.e., does
not contain a division by zero). Analogously, ℐ satisfies an ABox assertion of the form

– 𝐶(𝑎) if 𝑎ℐ ∈ 𝐶ℐ

– 𝑃 (𝑎, 𝑏) if (𝑎ℐ , 𝑏ℐ) ∈ 𝑃 ℐ

– 𝑈(𝑎, 𝑞) if (𝑎ℐ , 𝑞) ∈ 𝑈ℐ

Finally, an interpretation ℐ is called a model of a KB 𝒦 = (𝒯 ,𝒜), written ℐ |= 𝒦, if ℐ
satisfies all (role, attribute and concept) inclusion axioms in 𝒯 , all variants of equation
axioms in 𝒯 , and all assertions in 𝒜.

Finally, we define conjunctive queries (with assignments) over DL𝐸
RDFS .

Definition 7. A conjunctive query (CQ) is an expression of the form

𝑞(𝑥)← ∃𝑦.𝜑(𝑥, 𝑦)

where 𝑥 is a sequence of variables called distinguished variables, 𝑦 is a sequence of
variables called non-distinguished variables, and 𝜑 is a conjunction of class, role or
attribute atoms of the forms 𝐶(𝑥), 𝑃 (𝑥, 𝑦), and 𝑈(𝑥, 𝑧), respectively, and assignments
of the form 𝑥0 = 𝑓(𝑥1, . . . , 𝑥𝑛) representing simple equations, where 𝑥, 𝑦 are constant
symbols from 𝛤 or variables (distinguished or non-distinguished), and 𝑧 is either a value
from Q or a variable, and the 𝑥𝑖 are variables such that for all 𝑖 ≥ 1, 𝑥𝑖 appears in an
atom of the form 𝑈(𝑥, 𝑥𝑖) within 𝜑. A set of queries with the same head 𝑞(𝑥) is a union
of conjunctive queries (UCQ).

For an interpretation ℐ, we denote by 𝑞ℐ the set of tuples 𝑎 of domain elements and
elements of Q which makes 𝜑 true8 when 𝑎 is assigned to distinguished variables 𝑥 in 𝑞.

Definition 8. For a conjunctive query 𝑞 and a KB 𝒦 the answer to 𝑞 over 𝒦 is the set
ans(𝑞,𝒦) consisting of tuples 𝑎 of constants from 𝛤𝒦∪Q such that 𝑎ℳ ∈ 𝑞ℳ for every
modelℳ of the KB 𝒦.

Note that, as opposed to most DL-Lite variants (such as [3]), ans(𝑞,𝒦) in our setting
is not necessarily finite, as shown by the following example.

Example 2. Let𝒦1 = (𝒯1,𝒜1) with𝒜1 = 𝑢1(𝑜1, 1), 𝑢2(𝑜1, 1), 𝑢3(𝑜1, 1), 𝒯1 = {𝑒 : 𝑢1 =
𝑢2 + 𝑢3} and 𝑞(𝑥)← 𝑢1(𝑜1, 𝑥) then ans(𝑞,𝒦) contains any value from N.

8 We mean true in the sense of first-order logic, where we assume that the interpretation of
arithmetic expressions is built-in with the usual semantics for arithmetics over the rational
numbers Q, and that equality “=” is false for expressions that yield division by zero on the RHS.

3 SPARQL over DL𝐸
RDFS

The semantics of SPARQL is defined as usual based on matching of basic graph patterns
(BGPs), more complex patterns are defined as per the usual SPARQL algebra and
evaluated on top of basic graph pattern matching, cf. for instance [16, 19]. In order to
remain compatible with the notion of CQs in DL𝐸

RDFS , we only allow restricted BGPs.9

Definition 9. Let 𝑉 be an infinite set of variables, 𝐼 be the set of IRIs, 𝐼RDF =
{rdfs :subClassOf, rdfs :subPropertyOf, rdfs :domain, rdfs : range, rdf : type, definedByEquation},
and 𝐼 ′ = 𝐼 ∖ 𝐼RDF , then basic graph patterns (BGPs) are sets of RDF triple patterns
(𝑠, 𝑝, 𝑜) from ((𝐼 ′ ∪ 𝑉)× 𝐼 ′ × (𝐼 ′ ∪Q ∪ 𝑉)) ∪ ((𝐼 ′ ∪ 𝑉)× {rdf : type} × 𝐼 ′)

More complex graph patterns can be defined recursively on top of basic graph pat-
terns, i.e., if 𝑃1 and 𝑃2 are graph patterns, 𝑣 ∈ 𝑉 , 𝑔 ∈ 𝐼 ∪𝑉 , 𝑅 is a filter expression, and
Expr an arithmetic expression over constants and variables in 𝑉 , then (i) {{𝑃1}{𝑃2}}
(conjunction), (ii) {𝑃1}UNION {𝑃2} (disjunction), (iii) 𝑃1 OPTIONAL {𝑃2} (left-outer
join), (iv) 𝑃1 FILTER(𝑅) (filter), and (v) 𝑃1 BIND (Expr AS 𝑣) (assignment) are graph
patterns; as a syntactic restriction we assume that 𝑣 /∈ vars(𝑃1). The evaluation seman-
tics of complex patterns builds up on basic graph pattern matching,10 which we define in
our setting simply in terms of conjunctive query answering over the underlying DL.

Following the correspondence of Table 1 and the restrictions we have imposed
on BGPs, any BGP 𝑃 can trivially be mapped to a (non-distinguished-variable-free)
conjunctive query of the form 𝑞𝑃 : 𝑞(vars(𝑃)) ← 𝜑(𝑃), where vars(𝑃) is the set of
variables occurring in 𝑃 .

Example 3. Within the SPARQL query
SELECT ?X WHERE { { :o1 :u1 ?X } FILTER (?X > 1) }

the BGP { :o1 :u1 ?X } corresponds to the CQ from Example 2. FILTERs and other
complex patterns are evaluated on top of BGP matching:

Definition 10 (Basic graph pattern matching for DL𝐸
RDFS). Let 𝐺 be an RDF rep-

resentation of a DL𝐸
RDFS KB (cf. Table 1) 𝒦. Then, the solutions of a BGP 𝑃 for 𝐺,

denoted (analogously to [16]) as J𝑃 K𝐺 = ans(𝑞𝑃 ,𝒦).

Note that here we slightly abused notation using ans(𝑞𝑃 ,𝒦) synonymous for what
would be more precisely “the set of SPARQL variable mappings corresponding to
ans(𝑞𝑃 ,𝒦)”. As for the semantics of more complex patterns, we refer the reader to
[16, 19] for details, except for the semantics of BIND which is newly introduced in
SPARQL 1.1 [10], which we define as:

J𝑃 BIND (Expr AS 𝑣)K𝐺 = {𝜇 ∪ {𝑣 → eval(𝜇(Expr))} | 𝜇 ∈ J𝑃 K𝐺}

Here, by eval(𝜇(Expr)) we denote the actual value in Q from evaluating the arithmetic
expression 𝐸𝑥𝑝𝑟 after applying the substitutions from 𝜇.

9 We note though, that soundness of our query rewriting approach would not be affected if we
allowed arbitrary BGPs.

10 For simplicity we leave our GRAPH graph patterns or other new features except BIND intro-
duced in SPARQL1.1.

3.1 Adapting PerfectRef to DL𝐸
RDFS

Next, we extend the PerfectRef algorithm [3] which reformulates a conjunctive query
to directly encode needed TBox assertions in the query. The algorithm PerfectRefE in
Algorithm 1 extends the original PerfectRef by equation axioms and conjunctive queries
containing assignments, as defined before, following the idea of query rewriting by
“expanding” a conjunctive query (CQ) 𝑄 to a union of conjunctive queries (UCQ) 𝑄0
that is translated to a regular SPARQL 1.1 query which is executed over an RDF Store.

PerfectRefE first expands atoms using inclusion axioms (lines 6–8) as in the original
PerfectRef algorithm. Here, an DL𝐸

RDFS inclusion axiom 𝐼 is applicable to a query
atom 𝑔 if the function gr (Table 2) is defined.11 The only new thing compared to [3]
in Table 2 is the “adornment” adn(𝑔) of attribute atoms which we explain next, when
turning to the expansion of equation axioms.

11 With DL𝐸
RDFS we cover only a very weak DL, but we expect that our extension is applicable to

more complex DLs such as the one mentioned in [3], which we leave for future work.

Algorithm 1: Rewriting algorithm PerfectRefE
Input: Conjunctive query 𝑞, TBox 𝒯
Output: Union (set) of conjunctive queries

1 𝑃 := {𝑞}
2 repeat
3 𝑃 ′ := 𝑃
4 foreach 𝑞 ∈ 𝑃 ′ do
5 foreach 𝑔 in 𝑞 do // expansion
6 foreach inclusion axiom 𝐼 in 𝒯 do
7 if 𝐼 is applicable to 𝑔 then
8 𝑃 := 𝑃 ∪

{︀
𝑞[𝑔/ gr(𝑔, 𝐼)]

}︀
9 foreach equation axiom 𝐸 in 𝒯 do

10 if 𝑔 = 𝑈adn(𝑔)(𝑥, 𝑦) is an (adorned) attribute atom and
vars(𝐸) ∩ adn(𝑔) = ∅ then

11 𝑃 := 𝑃 ∪
{︀

𝑞[𝑔/ expand(𝑔, 𝐸)]
}︀

12 until 𝑃 ′ = 𝑃
13 return 𝑃

Table 2. Semantics of gr(𝑔, 𝐼) of Algorithm 1

𝑔 𝐼 gr(𝑔/𝐼)

𝐴(𝑥) 𝐵 ⊑ 𝐴 𝐵(𝑥)
∃𝑃 ⊑ 𝐴 𝑃 (𝑥, _)

∃𝑃 − ⊑ 𝐴 𝑃 (_, 𝑥)
∃𝑈 ⊑ 𝐴 𝑈(𝑥, _)

𝑃1(𝑥, 𝑦) 𝑃2 ⊑ 𝑃1 𝑃2(𝑥, 𝑦)
𝑈

adn(𝑔)
1 (𝑥, 𝑦) 𝑈2 ⊑ 𝑈1 𝑈

adn(𝑔)
2 (𝑥, 𝑦)

The actually new part of PerfectRefE that reformulates attribute atoms in terms of
equation axioms is in lines 9–11. In order to avoid infinite expansion of equation axioms
during the rewriting, the algorithm “adorns” attribute atoms in a conjunctive query by
a set of attribute names. That is, given an attribute atom 𝑈(𝑥, 𝑧) and a set of attribute
names {𝑈1, . . . , 𝑈𝑘} we call 𝑔 = 𝑈𝑈1,...,𝑈𝑘 (𝑥, 𝑧) an adorned attribute atom and write
adn(𝑔) = {𝑈1, . . . , 𝑈𝑘} to denote the set of adornments. For an unadorned 𝑔 = 𝑈(𝑥, 𝑧),
obviously adn(𝑔) = ∅. Accordingly, we call an adorned conjunctive query a CQ where
adorned attribute atoms are allowed.

The function expand(𝑔, 𝐸) returns for 𝑔 = 𝑈adn(𝑔)(𝑥, 𝑦) and 𝐸′ : 𝑈 = 𝑓(𝑈1, . . . , 𝑈𝑛)
being the 𝑈 -variant of 𝐸 the following conjunction:

𝑈
adn(𝑔)∪{𝑈}
1 (𝑥, 𝑦1) ∧ . . . ∧ 𝑈adn(𝑔)∪{𝑈}

𝑛 (𝑥, 𝑦𝑛) ∧ 𝑦 = 𝑓(𝑦1, . . . , 𝑦𝑛)

where 𝑦1, . . . , 𝑦𝑛 are fresh variables. Here, the condition vars(𝐸)∩ adn(𝑔) = ∅ ensures
that 𝑈 is not “re-used” during expansion to compute its own value recursively. The
adornment thus prohibits infinite recursion.

We note that we leave out the reduction step of the original PerfectRef algorithm
from [3][Fig.2, step (b)], since it does not lead to any additional applicability of inclusion
axioms in the restricted Description Logic DL𝐸

RDFS . As we may extend PerfectRefE
to more expressive DLs as part of future work, this step may need to be re-introduced
accordingly.

Finally, just as before we have defined how to translate a SPARQL BGP 𝑃 to a con-
junctive query, we translate the result of PerfectRefE(𝑞𝑃 , 𝒯) back to SPARQL by means
of a recursive translation function tr(PerfectRefE(𝑞𝑃 , 𝒯)). That is, for PerfectRefE(𝑞𝑃 , 𝒯) =
{𝑞1, . . . 𝑞𝑚} and each 𝑞𝑖 being of the form

⋀︀𝑘𝑖

𝑗=0 𝑎𝑡𝑜𝑚𝑗 , we define tr as follows:
tr({𝑞1, . . . 𝑞𝑚}) { tr(𝑞1) } UNION . . . UNION { tr(𝑞𝑚) }
tr(

⋀︀
𝑗

= 0𝑘𝑖 𝑎𝑡𝑜𝑚𝑗) tr(𝑎𝑡𝑜𝑚1) tr(𝑎𝑡𝑜𝑚𝑘𝑖)
tr(𝐴(𝑥)) tr(𝑥) rdf : type 𝐴
tr(𝑃 (𝑥, 𝑦)) tr(𝑥) P tr(𝑦)
tr(𝑈(𝑥, 𝑦)) tr(𝑥) U tr(𝑦)
tr(𝑦 = 𝑓(𝑦1, . . . , 𝑦𝑛)) BIND(f(tr(𝑦1),. . . ,tr(𝑦𝑛)) AS tr(𝑦))
tr(𝑥), for 𝑥 ∈ 𝑉 ?𝑥
tr(𝑥), for 𝑥 ∈ 𝛤 𝑥
tr(𝑥), for 𝑥 ∈ Q ”𝑥”̂̂ owl : rational

The following proposition follows from the results in [3], since (a) PerfectRefE is
a restriction of the original PerfectRef algorithm as long as no equation axioms are
allowed, and (b) any DL𝐸

RDFS KB is consistent.

Proposition 1. Let 𝑞 be a conjunctive query without assignments and 𝒦 = ⟨𝒯 ,𝒜⟩ be a
DL𝐸

RDFS KB without equation axioms. Then PerfectRefE is sound and complete, i.e.

ans(𝑞,𝒦) = ans(PerfectRefE(𝑞, 𝒯), ⟨∅,𝒜⟩)

The following corollary follows similarly.

Corollary 1. Let 𝑞 be a conjunctive query without assignments and without attribute
axioms and let 𝒦 = ⟨𝒯 ,𝒜⟩ be an arbitrary DL𝐸

RDFS KB. Then PerfectRefE is sound
and complete.

As for arbitrary DL𝐸
RDFS knowledge bases, let us return to Example 2.

Example 4. Given the knowledge base 𝒦1 = ⟨𝒯1,𝒜1⟩ and query 𝑞 from Example 2.
The query PerfectRefE(𝑞, 𝒯) is

{ 𝑞(𝑥)← 𝑢1(𝑜1, 𝑥), 𝑞(𝑥)← 𝑢𝑢1
2 (𝑜1, 𝑥2), 𝑢𝑢1

3 (𝑜1, 𝑥3), 𝑥 = 𝑥2 + 𝑥3}

which only has the certain answers 𝑥 = 1 and 𝑥 = 2, showing that PerfectRefE is
incomplete in general. As a variant of𝒦1, lets consider𝒦2 = ⟨𝒯1,𝒜2⟩ with the modified
ABox𝒜2 = {𝑢1(𝑜1, 2), 𝑢2(𝑜1, 1), 𝑢3(𝑜1, 1)}. In this case, notably PerfectRefE delivers
complete results for 𝒦2, i.e., ans(𝑞,𝒦2) = ans(PerfectRefE(𝑞, 𝒯1), ⟨∅,𝒜2⟩) with the
single certain answer 𝑥 = 2. Finally, the rewritten version of the SPARQL query in
Example 3 is
SELECT ?X WHERE {

{ { :o1 :u1 ?X } UNION
{ :o1 :u2 ?X2 . :o1 :u3 ?X3 . BIND(?X2+?X3 AS ?X) } }

FILTER (?X > 1) }

In order to capture a class of DL𝐸
RDFS KBs, where completeness can be retained, we

will use the following definition.

Definition 11. An ABox 𝒜 is data-coherent with 𝒯 , if there is no pair of ground atoms
𝑈(𝑥, 𝑑′), 𝑈(𝑥, 𝑑) with 𝑑 ̸= 𝑑′ entailed by 𝒦 = ⟨𝒯 ,𝒜⟩

The following result is obvious.

Lemma 1. Whenever 𝒜 is data-coherent with 𝒯 , any conjunctive query has a finite
number of certain answers.

Proof (Sketch). Assume that the certain answers to q are infinite. From Corollary 1 we
can conclude that infiniteness can only stem from distinguished variables that occur as
attribute value 𝑦 in some attribute atom 𝑈(𝑥, 𝑦) in the query. However, that would in turn
mean that there is at least one 𝑥 with an infinite set of findings for 𝑦, which contradicts
the assumption of data-coherence.

The following stronger result (which for our particular use case of BGP matching
in SPARQL we only consider for non-distinguished-variable-free conjunctive queries)
states that data-coherence in fact implies completeness.

Theorem 1. If 𝒜 is data-coherent with 𝒯 , the for any non-distinguished-variable-free
conjunctive query 𝑞 PerfectRefE is sound and complete.

Proof (Sketch). The idea here is that whenever 𝒜 is data-coherent with 𝒯 for any fixed
𝑥 any certain value 𝑦 for 𝑈(𝑥, 𝑦) will be returned by PerfectRefE: assuming the contrary,
following a shortest derivation chain 𝑈(𝑥, 𝑦) can be either (i) be derived by only atoms
𝑈𝑖(𝑥, 𝑦𝑖) such that any 𝑈𝑖 is different from 𝑈 , in which case this chain would have
been “expanded” by PerfectRefE, or (ii) by a derivation chain that involves an instance
of 𝑈(𝑥, 𝑧). Assuming now that 𝑧 ̸= 𝑦 would violate the assumption of data-coherence,
whereas if 𝑧 = 𝑦 then 𝑈(𝑥, 𝑦) was already proven by a shorter derivation chain.

In what follows, we will define a fragment of DL𝐸
RDFS KBs where data-coherence

can be checked efficiently. First, we note that a data-coherent ABox alone, such as for
instance in 𝒦2 in Example 4 above, is in general not a guarantee for data-coherence. To
show this, let us consider the following additional example.

Example 5. Consider the TBox 𝒯2 = {𝑒 : 𝑢1 = 𝑢2 + 1, 𝑢2 ⊑ 𝑢1} As easily can be seen,
any ABox containing an attribute assertion for either 𝑢1 or 𝑢2 is data-incoherent with 𝒯2.

The example also shows that considering equation axioms only is not sufficient to
decide data-coherence, but we also need to consider attribute inclusion axioms. Following
this intuition, we define a dependency graph over 𝒯 as follows.

Definition 12. A TBox dependency graph is 𝐺𝒯 = ⟨𝑁, 𝐸⟩ is constructed from nodes
for each attribute and each equation axiom 𝑁 = {𝑒 | 𝑒 is an equation axiom in 𝒯 }∪𝛤𝑈 .
There exist edges (𝑒, 𝑣) and (𝑣, 𝑒) between every equation 𝑒 and its variables 𝑣 ∈ vars(𝑒).
Furthermore there exists an edge (𝑢, 𝑣) for each attribute inclusion axiom 𝑢 ⊑ 𝑣. If 𝐺
contains no (simple) cycle with length greater than 2, then we call 𝒯 attribute-acyclic.

Example 6. Given 𝒯1, 𝒯2 from Examples 2 and 5, let further 𝒯3 = {𝑒1 : 𝑢1 = 𝑢2 +
1, 𝑒2 : 𝑢2 = 𝑢1 + 1}, 𝒯4 = {𝑒1 : 𝑢1 = 𝑢2 + 1, 𝑒2 : 𝑢2 = 𝑢1 − 1}, and 𝒯5 = {𝑒1 : 𝑢1 =
𝑢2 − 𝑢3, 𝑒2 : 𝑢4 = 𝑢2 𝑒3 : 𝑢4 = 𝑢3} 𝒯6 = {𝑒 : 𝑢1 = 𝑢2 − 𝑢3, 𝑢4 ⊑ 𝑢2 𝑢4 ⊑ 𝑢3} then
the resp. dependency graphs are as follows where the graphs for 𝒯2–𝒯5 are cyclic.

e u2u1

u3 e

u2u1

u2u1

e1

e2 u2

u3

u4eu1

T1 T2 T3,T4 T6u2

u3

u4e1u1

T5

e3

e3

Notably, since 𝑒2 is a variant of 𝑒1 in 𝒯4, 𝒯4 is actually equivalent to an acyclic TBox
(removing either 𝑒1 or 𝑒2), whereas this is not the case for 𝒯3; more refined notions of
acyclicity, which we leave for future work, might capture this difference. Therefore, as
shown in Examples 2 and 4 for 𝒯1, 𝒯2. Further, let us point out the subtle difference
between 𝒯5 and 𝒯6. In 𝒯5, when 𝑒1–𝑒3 are viewed as equation system, partially solving
this system would result in the new equation 𝑢1 = 0, independent of the ABox. Since
PerfectRefE does not solve any equation systems (but only instantiates equations with
values from the ABox), it would not detect this. On the contrary, in 𝒯6, only when a
concrete “witness” for 𝑢4 is available in the ABox, this constrains the value of 𝑢1 to be 0,
which could be correctly detected by means of PerfectRefE: for attribute-acyclic TBoxes,
data-coherence indeed (finitely) depends on the ABox and we can define a procedure to
check data-coherence (and thus completeness) by means of PerfectRefE itself.

Proposition 2. Let 𝒯 be an attribute-acyclic TBox, and 𝛤𝑈 = {𝑢1, . . . , 𝑢𝑚}. The
following SPARQL query 𝑄𝒯

𝑐ℎ𝑒𝑐𝑘

ASK { { tr(PerfectRefE(𝑞𝑃1 , 𝒯)) FILTER(?Y1 != ?Z1) }
UNION . . . UNION

{ tr(PerfectRefE(𝑞𝑃𝑚 , 𝒯)) FILTER(?Y1 != ?Z1) } }

where 𝑃𝑖 = { ?X 𝑢𝑖 ?Y1 . ?X 𝑢𝑖 ?Z2 } determines data-coherence in the following sense:
an ABox 𝒜 is data-coherent with 𝒯 if 𝑄 returns “no”.

The idea here is that since 𝒯 is attribute-acyclic, and due to the restriction that variable
occurs at most once in simple equations, finite witnesses for data-incoherences can be
acyclically derived from the ABox, and thus would be revealed by PerfectRefE.

4 Discussion of Alternative Implementation Approaches

Our approach relies on standard SPARQL1.1 queries and runs on top of any off-the-
shelf SPARQL1.1 implementation by first extracting the TBox and then rewriting BGPs
in each query according to the method described in the previous section. In order to
compare this rewriting to alternative approaches, we have looked into DL reasoners
as well as rule-based reasoners, namely, Racer, Pellet, and Jena Rules. We discuss the
feasibility of using either of these for query answering under DL𝐸

RDFS separately.
Racer [8] provides no SPARQL interface but uses its own functional query language

new Racer Query Language (nRQL). The system allows for modeling some forms of
equation axioms, cf. examples modeling unit conversions in [9], but Racer only uses
these for satisfiability testing and not for query answering (which is orthogonal to our
approach, as due to the lack of negation there is no inconsistency in DL𝐸

RDFS).
SWRL [12, 13] implementations like Pellet [26] allow to handle DL-safe rules [15],

that is, rules where each variable appears in at least one non-DL-Atom. We discussed
potential modeling of equation axioms as SWRL rules already in Example 1: as men-
tioned there, rules for each variant of each equation axiom must be added to enable
query answering for DL𝐸

RDFS . Taking this approach, experiments with Pellet showed
that queries over certain data-coherent ABoxes were answered correctly (despite – to our
reading – rules like (1)+(2) are not DL-safe in the strict sense), but we still experienced
termination problems for e.g. the data and query mentioned in Example 1, since strictly
speaking, the data for :Vienna is not data-coherent (due to rounding errors). Due to the
finite nature of our rewriting, our approach always terminates and is thus robust even for
such – strictly speaking – incoherent data. Sect. 5 will give more details.

Jena12 provides rule-based inference on top of TDB in a proprietary rule language
with built-ins, with SPARQL querying on top. Similar to SWRL, we can encode all
variants of equation axioms. Jena allows to execute rules in backward and forward mode,
where backward execution does not terminate due to its recursive nature (including
empty ABoxes). Forward execution suffers from similar non-termination problems as
mentioned above for incoherent data as in Example 1, whereas forward execution for
data-coherent ABoxes terminates. Jena offers a hybrid rule based reasoning where pure
RDFS inferencing is executed in a backward-chaining manner, but still can be combined
with forward rules; this approach was incomplete in our experiments, because property
inclusion axioms did not “trigger” the forward rules modeling equation axioms correctly.

5 A Practical Use Case and Experiments

For a prototypical application to compare and compute base indicators of cities – as its
needed for studies like Siemens’ Green City Index13 – we collected open data about cities
12 http://jena.apache.org/documentation/inference/index.html
13 http://www.siemens.com/entry/cc/en/greencityindex.htm

http://jena.apache.org/documentation/inference/index.html
http://www.siemens.com/entry/cc/en/greencityindex.htm

from several sources (DBPedia, Eurostat, . . .) from several years. When aggregating
these sources into a joint RDF dataset, different kinds of problems such as incoherences,
incomplete data, incomparable units along the lines of the extract in Example 1 occurred.
Most indicators (such as demography, economy, or climate data) comprise numeric
values, where functional dependencies modeled as equation axioms are exploitable to
arrive at more complete data from the sparse raw values.

For an initial experiment to test the feasibility of the query answering approach
presented in this paper, we assembled a dataset containing ABox 254,081 triples for a
total of 3162 city contexts (i.e., when we speak of a “city” sloppily, we actually mean
one particular city in a particular year) along with the following (attribute-acyclic) TBox:

e1 : tempHighC = (: tempHighF − 32) · 5 ÷ 9
e2 :populationRateMale = :populationMale ÷ :population
e3 :populationRateFemale = :populationFemale ÷ :population
e4 :area_km2 = :area_m2 ÷ 1000000
e5 :area_km2 = :area_mile2 ÷ 2.589988110336
e6 :populationDensity = :population ÷ :area_km2
:City ⊑ :Location foaf :name ⊑ rdfs : label dbpedia :name ⊑ rdfs : label
We use the following queries for our experiments:

Q1. Return the population density of all cities:
SELECT ?C ?P
WHERE { ?C rdf:type :City . ?C :populationDensity ?P . }

Q2. Select cities with a maximum annual temperature above 90∘F.
SELECT ?C
WHERE { ?C rdf:type :City . ?C rdfs:label ?L .

?C :tempHighF ?P . FILTER(?F > 90) }
Q3. Select locations with a label that starts with “W” and a population over 1 million:

SELECT ?C
WHERE { ?C rdf:type :Location . ?C rdfs:label ?L .

?C :population ?P .
FILTER(?P > 1000000 && STRSTARTS(?L,"W")) }

Q4. Select places with a higher female than male population rate.
SELECT ?C
WHERE { ?C :populationRateFemale ?F .

?C :populationRateMale ?M . FILTER(?F > ?M) }

Experimental results are summarized in Table 3. For the reasons given in Sect. 4, we
compare our approach only to Jena Rules. Experiments were run on the dataset using
Jena and ARQ 2.9.2 (without a persistent RDF Store). For Jena Rules, first we encoded
the essential RDFS rules plus all variants of equation axioms in a straightforward manner
as forward rules, leading to the expected non-termination problems with incoherent
data. To avoid this, we created a coherent sample of our dataset (253,114 triples) by
removing triples leading to possible incoherences, however still reaching a timeout of
10min for all 4 queries. As an alternative approach, we used Jena’s negation-as-failure
built-in noValue which returns sound but incomplete results, in that it fires a rule
only if no value exists for a certain attribute (on the inferences so far or in the data);

similar to our approach, this returns complete results for data-coherent datasets and
always terminates. As an example of encoding the variants of an axiom in Jena Rules,
we show the encoding of equation e6 (which is identical to the naive encoding except
the noValue predicates). Possible divisions by 0, which we do not need to care about
in our SPARQL rewriting, since BIND just filters them out as errors, are caught by
notEqual(𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡,0) predicates.
[(?city :area ?ar) (?city :population ?p)

notEqual(?ar, 0) quotient(?p, ?ar, ?pd)
noValue(?city, :populationDensity)
-> (?city :populationDensity ?d)]

[(?city :area ?ar) (?city :populationDensity ?pd)
product(?ar, ?pd, ?p) noValue(?city, :population)
-> (?city :population ?p)]

[(?city :populationDensity ?pd) (?city :population ?p)
notEqual(?pd, 0) quotient(?p, ?pd, ?ar) noValue(?city, :area)
-> (?city :area ?ar)]

Overall, while this experiment was mainly meant as a feasibility study of our query-
rewriting approach, the results as shown in Table 3 are promising: we clearly outperform
the only rule-based approach we could compare to. However, looking further into
alternative implementation strategies and optimizations remains on our agenda.

As a final remark, we observed during our experiments that single Web sources tend
to be coherent in the values they report for a single city, thus data-incoherences, i.e.
ambiguous results in our queries for one city typically stem from the combination of
different sources considered for computing values through equations. As a part of future
work, we aim to further investigate this, building up on our earlier results for combining
inferences in SPARQL with conveying provenance information in the results, cf. [27].

6 Further Related Work and Possible Future Directions

OWL ontologies for measurements and units such as QUDT [20], OM [21] provide
means to describe units and – to a certain extent – model conversion between these units,
though without the concrete machinery to execute these conversions in terms of arbitrary
SPARQL queries. Our approach is orthogonal to these efforts in that (a) it provides not
only a modeling tool for unit conversions, but integrates attribute equations as axioms in
the ontology language, and (b) allows for a wider range of use cases, beyond conversions

Table 3. Query response times in seconds

Coherent Sample of our Dataset Full Dataset

Our System Jena naive Jena noValue Our System Jena naive Jena noValue

Q1 6.5 >600 30.7 7.3 – 30.1
Q2 5.8 >600 32.7 5.7 – 31.3
Q3 7.8 >600 32.5 8.2 – 29.0
Q4 6.9 >600 34.3 7.9 – 32.4

between pairs of units only. It would be interesting to investigate whether ontologies like
QUDT and OM can be mapped to the framework of DL𝐸

RDFS or extensions thereof.
Moreover, in the realm of DL-Lite query rewriting, following the PerfectRef algo-

rithm [3] which we base on, there have been a number of extensions and alternative
query rewriting techniques proposed [7, 14, 17, 22, 23] which could likewise serve as a
basis for extensions by attribute equations. Another obvious direction for further research
is the extension to more expressive ontology languages than DL𝐸

RDFS . Whereas we have
deliberately kept expressivity to a minimum in this paper, apart from further DL-Lite
fragments we are particularly also interested in lightweight extensions of RDFS such as
OWL LD [6] which we aim to consider for future work.

Apart from query answering, this work opens up research in other reasoning tasks
such as query containment of SPARQL queries over DL𝐸

RDFS . While containment and
equivalence in SPARQL are a topic of active research [4,16,25] we note that containment
could in our setting depends not only on the BGPs, but also on FILTERs. E.g., intuitively
query Q4 in our setting would be equivalent (assuming :population > 0) to
SELECT ?C WHERE { ?C :populationFemale ?F .

?C :populationMale ?M . FILTER(?F > ?M) }
While we leave closer investigation for future work, we note another possible connection
to related work [24] on efficient query answering under FILTER expression also based
in constraint-based techniques.

Lastly, we would like to point out that our approach could be viewed as rather related
to Constraint-handling-rules [5] than to mainstream semantic Web rules approaches such
as SWRL, etc.; we aim to further look into this.

7 Conclusions

We have presented a novel approach to model mathematical equations as axioms in an
ontology, along with a practical algorithm for query answering using SPARQL over
such enriched ontologies. To the best of our knowledge, this is the first framework that
combines ontological reasoning in RDFS, inferencing about functional dependencies
among attributes formulated as generic equations, and query answering for SPARQL.
Experimental results compared to rule-based reasoning are encouraging. Given the
increasing amount of published numerical data in RDF on the emerging Web of data, we
strongly believe that this topic deserves increased attention within the Semantic Web
reasoning community.

Acknowledgements. Stefan Bischof has been partially funded by the Vienna Science
and Technology Fund (WWTF) through project ICT12-015.

References

1. Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V., Sherkhonov, E.: Representability in
DL-Lite𝑅 knowledge base exchange. In: 25th Int’l DL Workshop, vol. 846, pp. 4–14 (2012)

2. de Bruijn, J., Heymans, S.: Logical foundations of (e)RDF(S): Complexity and reasoning. In:
Aberer, K., et al. (eds.) 6th ISWC. LNCS, vol. 4825, pp. 86–99. Springer (2007)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

4. Chekol, M.W., Euzenat, J., Genevès, P., Layaïda, N.: Sparql query containment under shi
axioms. In: 26th AAAI Conf. (2012)

5. Frühwirth, T.W.: Constraint handling rules: the story so far. In: 8th PPDP, pp. 13–14 (2006)
6. Glimm, B., Hogan, A., Krötzsch, M., Polleres, A.: OWL: Yet to arrive on the web of data? In:

WWW2012 Workshop on Linked Data on the Web (2012)
7. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive datalog

programs. In: 13th Int’l KR Conf. (2012)
8. Haarslev, V., Moeller, R.: Racer system description. In: Goré, R., et al. (eds.) Automated

Reasoning (IJCAR). LNCS, vol. 2083, pp. 701–705. Springer (2001)
9. Haarslev, V., Möller, R.: Description logic systems with concrete domains: Applications for

the semantic web. In: 10th Int’l KRDB Workshop (2003)
10. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C proposed rec., W3C (2012)
11. Hayes, P.: RDF semantics. W3C rec., W3C (2004),
12. Horrocks, I., Patel-Schneider, P.F.: A proposal for an owl rules language. In: 13th Int’l Conf.

on World Wide Web (WWW2004), pp. 723–731. ACM (2004)
13. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

semantic web rule language combining OWL and RuleML. W3C member subm., W3C (2004)
14. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach

to ontology-based data access. In: 22nd IJCAI, pp. 2656–2661. (2011)
15. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal of Web

Semantics (JWS) 3(1), 41–60 (2005)
16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transac-

tions on Database Systems 34(3) (2009)
17. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under

description logic constraints. Journal of Applied Logic 8(2), 186–209 (2010)
18. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.: Linking data

to ontologies. In: Spaccapietra, S. (ed.) JODS X, LNCS, vol. 4900, pp. 133–173. Springer
(2008)

19. Prud’hommeaux, E., Seaborne (eds.), A.: SPARQL Query Language for RDF. W3C rec.,
W3C (2008)

20. Ralph Hodgson, P.J.K.: Qudt - quantities, units, dimensions and data types in owl and xml
(2011), http://www.qudt.org/

21. Rijgersberg, H., van Assem, M., Top, J.: Ontology of units of measure and related concepts.
Semantic Web Journal (SWJ), accepted (2012)

22. Rosati, R.: Prexto: Query rewriting under extensional constraints in dl - lite. In: Simperl, E.,
et al. (eds.) 9th ESWC, LNCS, vol. 7295, pp. 360–374. Springer (2012)

23. Rosati, R., Almatelli, A.: Improving query answering over dl-lite ontologies. In: 12th Int’l
KR Conf. (2010)

24. le Clément de Saint-Marcq, V., Deville, Y., Solnon, C., Champin, P.A.: Castor: A constraint-
based sparql engine with active filter processing. In: Simperl, E., et al. (eds.) 9th ESWC,
LNCS, vol. 7295, pp. 391–405. Springer (2012)

25. Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In: ICDT
(2010)

26. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics (JWS) 5(2), 51–53 (2007)

27. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for representing,
reasoning and querying with annotated semantic web data. Journal of Web Semantics (JWS)
12, 72–95 (2012)

http://www.qudt.org/

	RDFS with Attribute Equations via SPARQL Rewriting

