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Abstract. SPARQL 1.1 supports the use of ontologies to enrich query results
with logical entailments, and OWL 2 provides a dedicated fragment OWL QL
for this purpose. Typical implementations use the OWL QL schema to rewrite
a conjunctive query into an equivalent set of queries, to be answered against
the non-schema part of the data. With the adoption of the recent SPARQL 1.1
standard, however, RDF databases are capable of answering much more expressive
queries directly, and we ask how this can be exploited in query rewriting. We find
that SPARQL 1.1 is powerful enough to “implement” a full-fledged OWL QL
reasoner in a single query. Using additional SPARQL 1.1 features, we develop
a new method of schema-agnostic query rewriting, where arbitrary conjunctive
queries over OWL QL are rewritten into equivalent SPARQL 1.1 queries in a way
that is fully independent of the actual schema. This allows us to query RDF data
under OWL QL entailment without extracting or preprocessing OWL axioms.

1 Introduction

SPARQL 1.1, the recent revision of the W3C SPARQL standard, introduces significant
extensions to the capabilities of the popular RDF query language [10]. Even at the
very core of the query language, we can find many notable new features, including
property paths, value creation (BIND), inline data (VALUES), negation, and extended
filtering capabilities. In addition, SPARQL 1.1 now supports query answering over OWL
ontologies, taking full advantage of ontological information in the data [8].

Query answering in the presence of ontologies is known as ontology-based data
access (OBDA), and has long been an important topic in applied and foundational
research. Even before SPARQL provided support for this feature, several projects have
used ontologies to integrate disparate data sources or to provide views over legacy
databases, e.g. [5,15,16,6,11]. The W3C OWL 2 Web Ontology Language includes the
OWL QL language profile, which was specifically designed for this application [12].
With the arrival of SPARQL 1.1, every aspect of OBDA is thus supported by tailor-made
W3C technologies.

In practice, however, SPARQL and OWL QL are rarely integrated. Most works on
OBDA address the problem of answering conjunctive queries (CQs), which correspond
to SELECT-PROJECT-JOIN queries in SQL, and (to some degree) to Basic Graph
Patterns in SPARQL. The most common approach for OBDA is query rewriting, where
a given CQ is rewritten into a (set of) CQs that fully incorporate the schema information
of the ontology. The answers to the rewritten queries (obtained without considering the



ontology) are guaranteed to agree with the answers of the original queries (over the
ontology). This approach separates the ontology (used for query rewriting) from the
rest of the data (used for query answering), and it is typical that the latter is stored in a
relational database. Correspondingly, the rewritten queries are often transformed into
SQL for query answering. SPARQL and RDF do not play a role in this.

In this paper, we thus take a fresh look on the problem of OBDA query rewriting
with SPARQL 1.1 as our target query language. The additional expressive power of
SPARQL 1.1 allows us to introduce a new paradigm of schema-agnostic query rewriting,
where the ontological schema is not needed for rewriting queries. Rather, the ontology
is stored together with the data in a single RDF database. This is how many ontologies
are managed today, and it corresponds to the W3C view on OWL and RDF, which does
not distinguish schema and data components. The fact that today’s OBDA approaches
separate both parts testifies to their focus on relational databases. Our work, somewhat
ironically, widens the scope of OWL QL to RDF-based applications, which have hitherto
focused on OWL RL as their ontology language of choice.

Another practical advantage of schema-agnostic query rewriting is that it supports
frequent updates of both data and schema. The rewriting system does not need any
information on the content of the database under query, while the SPARQL processor that
executes the query does not need any support for OWL. This is particularly interesting
if a database can only be accessed through a restricted SPARQL query interface that
does not support reasoning. For example, we have used our approach to check the
consistency of DBpedia under OWL semantics, using only the public Live DBpedia
SPARQL endpoint4 (it is inconsistent: every library is inferred to belong to the mutually
disjoint classes “Place” and “Agent”).

Our main contributions are as follows:

– We express the standard reasoning tasks for OWL QL, including consistency check-
ing, classification, and instance retrieval, in single, fixed SPARQL 1.1 queries that
are independent of the ontology. For this, we use SPARQL 1.1 property paths, which
support a simple form of recursion that is powerful enough for OWL QL reasoning.

– We show how to rewrite arbitrary SPARQL Basic Graph Patterns (BGPs) into single
SPARQL 1.1 queries of polynomial size. This task is simplified by the fact that
SPARQL does not support “non-distinguished” variables as used in general CQs.

– We present a schema-agnostic rewriting of general CQs in SPARQL 1.1, again into
single queries of polynomial size. This rewriting is more involved, and we use two
additional features: inline data (VALUES) and (in)equality checks in filters.

– We show the limits of schema-agnostic rewriting in SPARQL 1.1 by proving that
many other OWL features cannot be supported in this way. This includes even the
most basic features OWL EL and OWL RL, and mild extensions of OWL QL.

Worst-case reasoning complexity remains the same in all cases, yet our approach is
much more practical in the case of standard reasoning and BGP rewriting. For general
CQs, the rewritten queries are usually too complex for today’s RDF databases to handle.
Nevertheless, we think that our “SPARQL 1.1 implementation” of OWL QL query
answering is a valuable contribution, since it reduces the problem of supporting OWL QL

4 http://live.dbpedia.org/sparql
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in an RDF database to the task of optimizing a single (type of) query. Since OWL QL
subsumes RDFS, one can also apply our insights to implement query answering under
RDFS ontologies, which again leads to much simpler queries.

In Section 2, we start by giving a compact introduction to the parts of SPARQL 1.1
that we require. Thereafter, in Section 3, we introduce OWL QL and relate its semantics
to a chase procedure. In Section 4, we develop queries for implementing basic QL
reasoning in SPARQL 1.1, and in Section 5, we extend this into a schema-agnostic
query rewriting procedure for conjunctive queries. Finally, we investigate the limits of
schema-agnostic query rewriting, and present several negative results in Section 6. We
close with a short discussion and outlook in Section 7. Omitted proofs can be found in
the accompanying technical report [3].

2 Preliminaries: RDF and SPARQL 1.1

We consider RDF documents based on the set IRI of IRIs and BN of blank node
identifiers; we do not consider literals, since they would complicate our exposition
without adding technical insights (they can mostly be treated like named individuals in
OWL QL). We use Turtle syntax for denoting RDF throughout this paper.

In addition to IRIs and blank nodes, SPARQL 1.1 queries use variables as con-
stituents, which are indicated by a preceding question mark. For compatibility with
the entailment regimes, we will consider SPARQL 1.1 under the set semantics, i.e.,
multiplicities of solutions will be ignored, as indicated by the DISTINCT keyword. Next,
we introduce syntax and semantics of the SPARQL 1.1 fragment employed in this paper.

Path expressions are defined inductively as follows: (i) Every IRI is a property path.
(ii) For p and q property paths, the following expressions are property paths as well: (ˆp)
for inverse, (p / q) for sequence, (p | q) for alternative, (p∗) for Kleene star. As usual,
parentheses can be omitted if there is no danger of confusion. Triple expressions are of
the form s p o where s and o are IRIs, blank nodes, or variables, whereas p is an IRI, a
variable, or a path expression. Basic graph patterns are defined as finite sequences of
triple expressions separated by a period. Values blocks for inline data have the shape
VALUES (?x1 . . .?xn){(v1,1 . . . v1,n) . . . (vk,1 . . . vk,n)} for natural numbers n and k with
vi, j ∈ IRI ∪ BN. Filter expressions are of the form FILTER(boolexp) where boolexp is
an algebraic expression encoding the application of filter functions to variables resulting
in a Boolean value (for more details see [10]). Graph patterns are defined inductively:
(i) any basic graph pattern is a graph pattern (ii) if gp1 and gp2 are graph patterns then
{gp1} UNION {gp2} is a graph pattern (iii) any sequence of graph patterns, values blocks
and filter expressions is again a graph pattern. A SELECT-DISTINCT query is a SPARQL
1.1 query of the shape SELECT DISTINCT varlist WHERE {gp}, where gp is a graph
pattern and varlist is a list of variables occurring in gp.

We now define the sematics of SPARQL 1.1 queries, without taking reasoning
into account; this is known as simple entailment (as opposed to OWL DL entail-
ment, where the OWL axioms are evaluated under OWL Direct Semantics [8]). We
define the evaluation of path expressions w.r.t. G as a binary relation over IRI ∪
BN in an inductive way: evalG(p) = {(u1, u2) | u1 p u2 ∈ G)} for p ∈ IRI, in-
verse evalG(ˆp) = {(u2, u1) | (u1, u2) ∈ evalG(p)}, sequence evalG(p / q) = {(u1, u3) |



(u1, u2) ∈ evalG(p), (u2, u3) ∈ evalG(q)}, alternative evalG(p | q) = evalG(p) ∪ evalG(q),
Kleene star evalG(p∗) =

⋃
n≥0 evalG(pn) where evalG(p0) = {(u, u) | u ∈ IRI ∪

BN occurs in G} and evalG(pn+1) = evalG(pn) ◦ evalG(p). The evaluation evalG(bgp)
of a basic graph pattern bgp w.r.t. some RDF graph G is the set of all partial map-
pings µ from variables in bgp to IRIs or blank nodes of G, such that there exists
some mapping σ from all blank nodes in bgp to terms of G for which µ(σ(bgp)) ∈ G.
Moreover, evalG(VALUES (?x1 . . .?xn){(v1,1 . . . v1,n) . . . (vk,1 . . . vk,n)}) = {{?x1 7→v1,1, . . . ,
?xn 7→v1,n}, . . . {?x1 7→vk,1, . . . , ?xn 7→vk,n}} and evalG({gp1} UNION {gp2}) = evalG(gp1) ∪
evalG(gp2). For graph patterns gp that are sequences of graph patterns, values blocks and
filter expressions FILTER(boolexp1), . . . , FILTER(boolexp`) we let evalG(gp) = {µ | µ ∈
J∧µ(boolexp1) = true∧. . .∧µ(boolexp`) = true}where J is the join over all evalG(block)
where block ranges over all graph patterns and values blocks of the sequence. We say
a graph pattern gp has a match into a graph G if evalG(gp) , ∅. Finally, the set of
answers of a SELECT-DISTINCT query SELECT DISTINCT varlist WHERE {gp} is the
set obtained by restricting every partial function µ ∈ evalG(gp) to the variables contained
in varlist.

3 OWL QL: RDF Syntax and Rule-Based Semantics

OWL QL is one of the OWL 2 profiles, which restrict the OWL 2 DL ontology language
to ensure that reasoning is tractable [12]. To ensure compatibility with SPARQL, we work
only with the RDF representation of OWL QL here [13]. Like OWL 2 DL, OWL QL
requires “standard use” of RDFS and OWL vocabulary, i.e., special vocabulary that is
used to encode ontology axioms in RDF is strictly distinct from the ontology’s vocabulary,
and can only occur in specific triple patterns. Only a few special IRIs, such as owl:Thing,
can also be used like ontology vocabulary in axioms.

OWL classes, properties, and individuals are represented by RDF elements, where
complex class and property expressions are represented by blank nodes. Whether an
expression is represented by an IRI or a blank node does not have an impact on onto-
logical entailment, so we ignore this distinction in most cases. OWL 2 DL allows us to
use a single IRI to represent an individual, a class, and a property in the same ontology;
owing to the restrictions of standard use, it is always clear which meaning applies in a
particular case. Hence we will also work with one single set of IRIs.

Next, we define the constrains that an RDF graph has to satisfy to represent an
OWL QL ontology. To this end, consider a fixed RDF graph G. A property expression
in G is an IRI or a blank node _:b that occurs in a pattern {_:b owl:inverseOf P} with
P ∈ IRI. We use PRP for the set of all property elements in a given RDF graph. OWL QL
further distinguishes two types of class expressions with different syntactic constraints.
The set SBC of subclasses in G consists of all IRIs and all blank nodes _:b that occur in
a pattern {_:b owl:onProperty P; owl:someValuesFrom owl:Thing}, where P ∈ PRP. The
set SPC of superclasses in G is defined recursively as follows. An element x is in SPC
if it is in IRI, or if it is in BN and G contains one of the following patterns:

– {x owl:onProperty PRP; owl:someValuesFrom y} where y ∈ SPC;
– {x owl:intersectionOf (y1, . . . , yn)} where y1, . . . , yn ∈ SPC;
– {x owl:complementOf y} where y ∈ SBC.



G is an OWL QL ontology may use the following triple patterns to encode axioms:

– {IRI PRP IRI}
– {IRI rdf:type SPC}
– {SBC rdfs:subClassOf SPC}
– {SBC owl:equivalentClass SBC}
– {SBC owl:disjointWith SBC}
– {PRP rdfs:range SPC}

– {PRP rdfs:domain SPC}
– {PRP rdfs:subPropertyOf PRP}
– {PRP owl:equivalentProperty PRP}
– {PRP owl:inverseOf PRP}
– {PRP owl:propertyDisjointWith PRP}
– {IRI owl:differentFrom IRI}

– {BN rdf:type owl:AllDisjointClasses; owl:members (SBC, . . . ,SBC)}
– {BN rdf:type owl:AllDisjointProperties; owl:members (PRP, . . . ,PRP)}
– {BN rdf:type owl:AllDifferent; owl:members (IRI, . . . , IRI)}

G is an OWL QL ontology if every triple in G is part of a unique axiom or a unique
complex class or property definition used in such axioms. For simplicity, we ignore triples
used in annotations or ontology headers. Moreover, we do not consider the OWL QL
property characteristics symmetry, asymmetry, and global reflexivity. Asymmetry and
reflexivity are not a problem, but their explicit treatment would inflate our presentation
considerably. Symmetry, in contrast, cannot be supported with SPARQL 1.1, as we will
show in Section 6. This is no major limitation of our approach, since symmetry can be
expressed using inverses. This shows that rewritability of an ontology language does not
depend on ontological expressiveness alone.

The semantics of OWL QL is inherited from OWL DL, but it can also be described
by defining a universal model, i.e., a structure that realizes precisely the entailments of
an ontology. Such a “least model” exactly captures the semantics of an ontology. To
define a universal model for OWL QL, we define a set of RDF-based inference rules,
similar to the rules given for OWL RL in the standard [12]. In contrast to OWL RL,
however, the application of rules can introduce new elements to an RDF graph, and the
universal model that is obtained in the limit is not finite in general. Indeed, our goal is
not to give a practical reasoning algorithm, but to define the semantics of OWL QL in a
way that is useful for analyzing the correctness of the rewriting algorithms we introduce.

The main rules for reasoning in OWL QL are defined in Table 1. A rule is applicable
if the premise on the left matches the current RDF graph and the conclusion on the
right does not match the current graph; in this case, the conclusion is added to the
graph. In case of rule (2), this requires us to create a fresh blank node. In all other cases,
we only add new triples among existing elements. Rules like (3) are actually schemas
for an infinite number of rules for lists of any length n and any index i ∈ {1, . . . , n}.
Rules (15)–(16) cover owl:Thing and owl:topObjectProperty, which lead to conclusions
that are true for “all” individuals. To ensure standard use, we cannot simply assert
x rdf:type owl:Thing for every IRI x, and we restrict instead to IRIs that are used as
individuals in the ontology. We define individual(x) to be the SPARQL pattern {x rdf:type
owl:NamedIndividual} UNION {x rdf:type ?C . ?C rdf:type owl:Class} UNION {x ?P
?Y . ?P rdf:type owl:ObjectProperty} UNION {?Y ?P x . ?P rdf:type owl:ObjectProperty}.
Note that this also covers any newly introduced individuals.

Definition 1. The chase G′ of an OWL QL ontology G is a possibly infinite RDF graph
obtained from G by fair application of the rules of Tables 1, meaning that every rule that
is applicable has eventually been applied.



Table 1. RDF inference rules for OWL QL

→ [] rdf:type owl:Thing (1)

?X rdf:type [owl:onProperty ?P; owl:someValuesFrom ?C]→ ?X ?P [rdf:type ?C] (2)

?X rdf:type [owl:intersectionOf (?C1, . . . , ?Ci, . . . , ?Cn)]→ ?X rdf:type ?Ci (3)

?X rdf:type ?C . ?C rdfs:subClassOf ?D→ ?X rdf:type ?D (4)

?X rdf:type ?C . ?C owl:equivalentClass ?D→ ?X rdf:type ?D (5)

?X rdf:type ?C . ?D owl:equivalentClass ?C→ ?X rdf:type ?D (6)

?X ?P ?Y .

?C owl:onProperty ?P; owl:someValuesFrom owl:Thing→ ?X rdf:type ?C (7)

?X ?P ?Y . ?P rdfs:domain ?C→ ?X rdf:type ?C (8)

?X ?P ?Y . ?P rdfs:range ?C→ ?Y rdf:type ?C (9)

?X ?P ?Y . ?P owl:inverseOf ?Q→ ?Y ?Q ?X (10)

?X ?P ?Y . ?Q owl:inverseOf ?P→ ?Y ?Q ?X (11)

?X ?P ?Y . ?P rdfs:subPropertyOf ?Q→ ?X ?Q ?Y (12)

?X ?P ?Y . ?P owl:equivalentProperty ?Q→ ?X ?Q ?Y (13)

?X ?P ?Y . ?Q owl:equivalentProperty ?P→ ?X ?Q ?Y (14)

individual(?X)→ ?X rdf:type owl:Thing (15)

?X rdf:type owl:Thing . ?Y rdf:type owl:Thing→ ?X owl:topObjectProperty ?Y (16)

Finally, some features of OWL QL can only make the ontology inconsistent, but
not introduce any other kinds of positive entailments. According patterns are shown
in Table 2. If any of these match, the ontology is inconsistent, every OWL axiom is a
logical consequence, and there is no universal model.

Theorem 1. Consider an OWL QL ontology G with chase G′, and a basic graph pattern
P. A variable mapping µ is a solution for P over G under the OWL DL entailment regime
if and only if either (1) µ is a solution for P over G′ under simple entailment, or (2) one
of the patterns of Table 2 matches G′.

4 QL Reasoning with SPARQL Property Expressions

Next, we define SPARQL 1.1 queries to solve standard reasoning tasks of OWL QL. We
start with simple cases and then consider increasingly complex reasoning problems.

We first focus on the property hierarchy. An axiom of the form p rdfs:subPropertyOf
q is entailed by an ontology G if, for newly introduced individuals a and b, G ∪ {a p b}
entails {a q b}. By Theorem 1, the rules of Section 3 represent all possibilities for
deriving this information. In this particular case, we can see that only rules (10)–
(14) in Table 1 can derive a triple of the form a q b, where q is a regular prop-
erty. The case q =owl:topObjectProperty is easy to handle, since p rdfs:subPropertyOf



Table 2. RDF inference patterns for inconsistency in OWL QL

?X owl:bottomObjectProperty ?Y (17)

?X rdf:type owl:Nothing (18)

?X rdf:type ?C . ?X rdf:type [owl:complementOf ?C] (19)

?X rdf:type ?C . ?X rdf:type ?D . ?C owl:disjointWith ?D (20)

?X rdf:type ?Ci . ?X rdf:type ?C j.

_:b rdf:type owl:AllDisjointClasses; owl:members (?C1, . . . , ?Ci, . . . , ?C j, . . . , ?Cn) (21)

?X ?P ?Y . ?X ?Q ?Y . ?P owl:propertyDisjointWith ?Q (22)

?X ?Pi ?Y . ?X ?P j ?Y.

_:b rdf:type owl:AllDisjointProperties; owl:members (?P1, . . . , ?Pi, . . . , ?P j, . . . , ?Pn) (23)

?X owl:differentFrom ?X (24)

_:b rdf:type owl:AllDifferent; owl:members (?I1, . . . , ?X, . . . , ?X, . . . , ?In) (25)

owl:topObjectProperty is always true (which is also shown by rules (15) and (16)). In
addition, it might be that G ∪ {a p b} is inconsistent, implied by rules of Table 2; we will
ignore this case for now, since it requires more powerful reasoning.

Definition 2. We introduce sPO, invOf, and eqP as abbreviations for rdfs:subPropertyOf,
owl:inverseOf, and owl:equivalentProperty, respectively, and define the following com-
posite property path expressions SpoEqp B (sPO | eqP | ˆeqP), Inv B (invOf | ˆinvOf),
subPropertyOf B (SpoEqp | (Inv / SpoEqp∗ / Inv))∗, as well as subInvPropertyOf B
SpoEqp∗ / Inv / subPropertyOf. Moreover, for an arbitrary term x, let univProperty[x]
be the pattern {owl:topObjectProperty (SpoEqp | Inv)∗ x}.

The pattern subPropertyOf does not check for property subsumption that is caused
by the inconsistency rules in Table 2, but it can be used to check for subsumptions related
to owl:topObjectProperty. The corresponding correctness result is as follows:

Proposition 1. Consider an OWL QL ontology G with properties p, q ∈ PRP such that
G ∪ {_:a p _:b} is consistent. Then G entails p rdfs:subPropertyOf q iff the pattern
{p subPropertyOf q} UNION univProperty[q] matches G.

We will extend this to cover the inconsistent case in Theorem 2 below. First, however,
we look at entailments of class subsumptions. In this case, the main rules are (2)–(9).
However, several of these rules also depend on property triples derived by rules (10)–(14),
and we apply our results on property subsumption to take this into account.

Definition 3. Let eqC and sCO abbreviate owl:equivalentClass and rdfs:subClassOf,
respectively. We define property path expressions

– intListMember B (owl:intersectionOf / rdf:rest∗ / rdf:first),
– someProp B (owl:onProperty / subPropertyOf / (ˆowl:onProperty | rdfs:domain)),



Table 3. Pattern emptyClass[x] for detecting empty classes.

x (sCO | eqC | ˆeqC | intListMember | owl:someValuesFrom |
(owl:onProperty / (Inv | SpoEqp)∗ / (ˆowl:onProperty | rdfs:domain | rdfs:range))∗ ?C . {

{?C subClassOf owl:Nothing} UNION
{?C subClassOf ?D1 {{?C subClassOf ?D2} UNION univClass[?D2]} {
{?D1 disjointClasses ?D2} UNION
{?V rdf:type owl:AllDisjointClasses . twoMembers[?V, ?D1, ?D2]}

}} UNION
{?C (owl:onProperty / (Inv | SpoEqp)∗) ?P . {
{?P subPropertyOf owl:bottomObjectProperty} UNION
{?P subPropertyOf ?Q1 {{?P subPropertyOf ?Q2} UNION univProperty[?Q2]} {
{?Q1 (owl:propertyDisjointWith | ˆowl:propertyDisjointWith) ?Q2} UNION
{?V rdf:type owl:AllDisjointProperties . twoMembers[?V, ?Q1, ?Q2]}

}

}}

}

– somePropInv B (owl:onProperty / subInvPropertyOf / rdfs:range),
– subClassOf B (sCO | eqC | ˆeqC | intListMember | someProp | somePropInv)∗.

Moreover, we let univClass[x] denote the pattern {owl:Thing subClassOf x} UNION
{owl:topObjectProperty ((SpoEqp | Inv)∗ / (ˆowl:onProperty | rdfs:domain | rdfs:range)/
subClassOf) x}

Proposition 2. Consider an OWL QL ontology G with classes c ∈ SPC and d ∈ SBC
such that G ∪ {_:a rdf:type c} is consistent. Then G entails c rdfs:subClassOf d iff the
pattern {c subClassOf d} UNION univClass[d] matches G.

It remains to identify classes that are incoherent, i.e., for which c rdfs:subClassOf
owl:Nothing is entailed. To do this, we need to consider the patterns of Table 2.

Definition 4. For arbitrary terms x, y, and z, let twoMembers[x, y, z] be the pattern
{x (owl:members / rdf:rest∗) ?W . ?W rdf:first y . ?W (rdf:rest+ / rdf:first) z}, and let
disjointClasses be the property path expression (owl:disjointWith | ˆowl:disjointWith |
owl:complementOf | ˆowl:complementOf). The query pattern emptyClass[x] is defined
as in Table 3, and the query pattern emptyProperty[x] is defined as in Table 4.

We can now completely express OWL QL schema reasoning in SPARQL 1.1:

Theorem 2. An OWL QL ontology G is inconsistent iff it has a match for the pattern

{?X rdf:type ?C . emptyClass[?C]} UNION {?X ?P ?Y . emptyProperty[?P]} UNION

{?X owl:differentFrom ?X} UNION

{?V rdf:type owl:AllDifferent . twoMembers[?V, ?X, ?X]}. (26)

G entails c rdfs:subClassOf d for c ∈ SPC and d ∈ SBC iff G is either inconsistent or
has a match for the pattern

{c subClassOf d} UNION univClass[d] UNION emptyClass[c]. (27)



Table 4. Pattern emptyProperty[x] for detecting empty properties.

x (Inv | SpoEqp | (ˆowl:onProperty /
(sCO | eqC | ˆeqC | intListMember | owl:someValuesFrom)∗ / owl:onProperty))∗ ?P . {
{?P subPropertyOf owl:bottomObjectProperty} UNION
{?P subPropertyOf ?Q1 {{?P subPropertyOf ?Q2} UNION univProperty[?Q2]} {
{?Q1 (owl:propertyDisjointWith | ˆowl:propertyDisjointWith) ?Q2} UNION
{?V rdf:type owl:AllDisjointProperties . twoMembers[?V, ?Q1, ?Q2]}

}} UNION
{?P ((ˆowl:onProperty | rdfs:domain | rdfs:range) / subClassOf) ?C . {

{?C subClassOf owl:Nothing} UNION
{?C subClassOf ?D1 {{?C subClassOf ?D2} UNION univClass[?D2]} {
{?D1 disjointClasses ?D2} UNION
{?V rdf:type owl:AllDisjointClasses . twoMembers[?V, ?D1, ?D2]}

}

}}

}

G entails x rdf:type c iff G is either inconsistent or has a match for the pattern

{{x (rdf:type / subClassOf) c} UNION

{x ?P ?Y . ?P (subPropertyOf / (ˆowl:onProperty | rdfs:domain) / subClassOf) c} UNION

{?Y ?P x . ?P (subPropertyOf / rdfs:range / subClassOf) c}

} UNION univClass[c] (28)

G entails p rdfs:subPropertyOf q for p, q ∈ PRP iff G is either inconsistent or has a
match for the pattern

{p subPropertyOf q} UNION univProperty[q] UNION emptyProperty[p]. (29)

G entails x p y iff G is either inconsistent or has a match for the pattern

{x ?R y . ?R subPropertyOf p} UNION {y ?R x . ?R subInvPropertyOf p}

UNION univProperty[p]. (30)

5 OWL QL Query Rewriting with SPARQL 1.1

We now turn towards query answering over OWL QL ontologies using SPARQL 1.1.
Research in OWL QL query answering typically considers the problem of answering
conjunctive queries (CQs), which are conjunctions of OWL property and class assertions
that use variables only in the place of individuals, not in the place of properties or classes.
Conjunction can easily be represented by a Basic Graph Pattern in SPARQL, yet CQs are
not a subset of SPARQL, since they also support existential quantification of variables.
Normal query variables are called distinguished while existentially quantified variables
are called non-distinguished. Distinguished variables can only bind to elements of the
ontology, whereas for non-distinguished variables it suffices if the ontology implies that
some binding must exist.



Example 1. Consider an OWL ontology with the assertion :peter rdf:type :Person
and the axiom :Person rdfs:subClassOf [owl:onProperty :father; owl:someValuesFrom
:Person]. This implies that :peter has some :father but the ontology may not contain
any element of which we know that it plays this role. In this case, the SPARQL pattern
{?X :father ?Y} would not have a match with ?X = :peter under OWL DL entailment.
In contrast, if the variable ?Y were non-distinguished, the query would match with
?X = :peter (and ?Y would not receive any binding).

SPARQL can only express CQs where all variables are distinguished. To define
this fragment of SPARQL, recall that the OWL DL entailment regime of SPARQL 1.1
requires every variable to be declared for a certain type (individual, object property,
datatype property, or class) [8]. This requirement is the analogue of “standard use” on
the level of query patterns, and it allows us to focus on instance retrieval here. We thus
call a Basic Graph Pattern P CQ-pattern if: (1) P does not contain any OWL, RDF, or
RDFS URIs other than rdf:type in property positions, (2) all variables in P are declared
as required by the OWL DL entailment regime, (3) property variables occur only in
predicate positions, and (4) class variables occur only in object positions of triples with
predicate rdf:type. Rewriting CQ-patterns is an easy application of Theorem 2:

Definition 5. For a triple pattern e rdf:type c, the rewriting ~x rdf:type c� is the graph
pattern (28) as in Theorem 2; for a triple pattern x p y, the rewriting ~x p y� is the
graph pattern (30). The rewriting ~P� of a CQ-pattern P is obtained by replacing every
triple pattern s p o in P by {~s p o�}.

Theorem 3. If G is the RDF graph of a consistent OWL QL ontology, then the matches
of a CQ-pattern P on G under OWL DL entailment are exactly the matches of ~P� on G
under simple entailment.

5.1 Rewriting General Conjunctive Queries

We now explain the additional aspects that we need to take into account for computing
answers to CQs with non-distinguished variables, and give an intuitive overview of our
rewriting approach. A general challenge that we have to address is that classical query
rewriting for OWL QL may lead to exponentially many queries, owing to the fact that
many non-deterministic choices have to be made to find a query match. Some of these
choices depend on the ontology, e.g., on the depth of the class hierarchy, and are naturally
represented in (small) SPARQL 1.1 queries in our approach. Other choices, however,
depend on the query, e.g., the decision which variables should be identified (query
factorization). It is not immediately clear how to represent these choices in a polynomial
query, even when using path expressions. Our solution depends on the creative use of
the VALUES feature of SPARQL 1.1.

As explained before, non-distinguished variables can be matched to inferred individ-
uals that are not named in the ontology. The chase introduced in Section 3 still captures
this more general notion of query answering. The only rule to infer new individuals is
(2), which introduces fresh bnodes that we call anonymous individuals. The elements
of the original ontology (bnode or not) are named individuals. It is well known that a
QL ontology G entails a CQ q if and only if there is a match from q to the (possibly



infinite) chase of G such that all distinguished variables are mapped to named individuals.
Non-distinguished variables can be mapped to either named or anonymous individuals.

To represent the match of a query variable x in the rewritten query, we introduce
a SPARQL variable ?Mx. For named individuals, ?Mx can bind to the individual in
the RDF graph. However, if x is non-distinguished, then it could match to anonymous
individuals, which are not represented by any individual in RDF. In this case, we bind
?Mx to the bnode _:b representing the OWL property restriction _:b owl:onProperty ?P;
owl:someValuesFrom ?C that was used in rule (2) to generate the anonymous individual.
Indeed, all class and property assertions that are derived for the anonymous individual
can be deduced from ?P and ?C only, so this binding allows us to check query conditions.

However, the bnode _:b does not determine the identity of the anonymous individual,
since infinitely many anonymous individuals can be generated from the same OWL
property restriction. Example 1 illustrates this: every person has another person as is its
father, ad infinitum. Nevertheless, the query :peter :father ?Z . ?Z :father ?Z should not
have a match, even if ?Z is non-distinguished. Disregarding universal property assertions
that follow from rule (16), anonymous individuals can only be related to their parent
individual (represented by ?X in rule (2)) or to their children (which have the anonymous
element as their parent). Therefore, to check if a triple pattern ?X p ?Y can match, we
may need to know if ?X is the parent of ?Y. We capture this with auxiliary variables
?Pxy which we bind to one of two possible values (interpreted as true and false).

We thus introduce variables ?Pxy for every pair of CQ variables x and y where y is
non-distinguished. This completely specifies the parenthood of the matches. Together
with the generating OWL restriction represented by ?Mx, this gives us enough infor-
mation to verify property assertions. To find all matches of a CQ, one has to allow for
the possibility that several query variables represent the same element of the chase. To
capture this, we introduce variables ?Exy that tell us if the values of x and y are equal;
again we use two possible values to represent true and false. Additional conditions in our
query will ensure that there are no cycles in the parenthood relation, and that equal values
are indeed equal. Many of these can be encoded in propositional logic, as explained next.

5.2 Expressing Propositional Logic in SPARQL 1.1

Our intuitive explanation above uses “Boolean” variables like ?Pxy and ?Exy, which can
have one of two values. Moreover, the bindings of these variables should obey further
constraints. For example, if x is the parent of y and y is identified with z, then x is the
parent of z. This corresponds to a propositional logic implication ?Pxz ∧ ?Eyz→ ?Pxz.

We express this using the VALUES feature of SPARQL 1.1, which allows us to
assign a fixed set of bindings to a list of variables. For example, the pattern VALUES
(?Pxy){(<http://example.org/true>)(<http://example.org/false>)} has exactly two solutions,
binding ?Pxy to one of the given URIs. The URIs used here are irrelevant, and it does
not even matter if they occur in the data; we thus use the abbreviations T and F to denote
two distinct URIs that we use to represent Boolean values. Propositional logic formulae
can now be represented by encoding their truth table using VALUES. For example, the
implication ?Pxz ∧ ?Eyz→ ?Pxz can be expressed as:

VALUES (?Pxy ?Eyz ?Pxz){(F F F)(T F F)(F T F)(F F T)(T F T)(F T T)(T T T)}. (31)



We denote this pattern as ~?Pxz ∧ ?Eyz→ ?Pxz�, and similarly for any other proposi-
tional logic formula over SPARQL variables. The solutions to (31) are exactly the truth
assignments under which the implication holds. In particular, every solution requires
each of the three variables to be bound to T or F (and thus to never be undefined).

5.3 A Schema-Agnostic Rewriting for Conjunctive Queries

We now specify the complete rewriting of CQs in SPARQL 1.1, which consists of
rewritings for the individual triple patterns and several additional patterns to ensure that
the bindings of all (auxiliary) variables are as intended. Consider a CQ q with variables
Var(q), partitioned into the set Vard(q) of distinguished variables and Varn(q) of non-
distinguished variables. Our encoding uses the following sets of SPARQL variables:

– for every x ∈ Var(q), a variable ?Mx (encoding the “match for x”).

In addition, we use the following propositional SPARQL variables:

– for every x ∈ Var(q), a variable ?Nx (“x is a named individual”).
– for every pair x, y ∈ Var(q), a variable ?Exy (“x is equal to y”);
– for every pair x ∈ Var(q) and y ∈ Varn(q), a variable ?Pxy (“x is the parent of y”);
– for every pair x, y ∈ Varn(q), a variable ?Axy (“x is an ancestor of y”);

The variables ?Axy are used to encode the transitive closure over the parent relations
on non-distinguished variables; this is necessary to preclude cyclic ancestries. We use
PropConstraints(q) to denote the SPARQL encoding of all of the following implications
(for every possible combination of the above variables, if no other condition is given):

for x ∈ Vard(q): T→ ?Nx

?Exy→ ?Eyx ?Exy ∧ ?Nx→ ?Ny ?Pxy→ ?Axy

?Exy ∧ ?Eyz→ ?Exz ?Exy ∧ ?Pxz→ ?Pyz ?Axy ∧ ?Ayz→ ?Axz

?Pxz ∧ ?Pyz→ ?Exy ?Exy ∧ ?Pzx→ ?Pzy ?Axx→ F

The previous conditions do not ensure yet that the bindings for ?Mx and ?My are the
same whenever ?Exy is true. This cannot be encoded using VALUES. Instead, we define
EqualityFilter(q) to be the condition of the following filter conditions:

FILTER(?Exy = F || ?Mx = ?My) x, y ∈ Var(q)

We can now define the rewriting of the actual query conditions. For readability,
we use ~?V := u� to abbreviate VALUES (?V){(u)}. The triple pattern x rdf:type c is
rewritten into the following pattern, denoted Rewrite(x rdf:type c):

{~?Nx := T� . ~?Mx rdf:type c�}

UNION {univClass[c]}

UNION {~?Nx := F� . ?E subClassOf c

{{?Mx owl:someValuesFrom ?E} UNION

{?Mx (owl:onProperty / subPropertyOf / rdfs:range) ?E} UNION

{?Mx (owl:onProperty / subInvPropertyOf / (ˆowl:onProperty | rdfs:domain)) ?E}}



A triple pattern x p y is rewritten into the following pattern, denoted Rewrite(x p y):

{~?Nx := T� . ~?Ny := T� . ~?Mx p ?My�}

UNION {univProperty[p]}

UNION {~?Ny := F� . ~?Pxy := T� . ?My (owl:onProperty / subPropertyOf) p

{Rewrite(x rdf:type ?My)}

UNION {~?Nx := F� . ~?Pyx := T� . ?Mx (owl:onProperty / subInvPropertyOf) p

{Rewrite(y rdf:type ?Mx)}

Note that the parenthood relationship ?Pyx is only relevant for checking certain triple
patterns. In each of these cases, we verify that the parent element is really capable of
creating the required child. This ensures that all assumed parenthoods that are relevant to
prove the query are really derived. In addition, we still need to check that all anonymous
elements are really derived (from some original ancestor element in the ontology).

Example 2. Consider an OWL ontology with the assertion :peter rdf:type :Person
and the axiom :Person rdfs:subClassOf [owl:onProperty :mother; owl:someValuesFrom
:Woman]. Then the query {?X rdf:type :Woman} with ?X non-distinguished has a match.
However, if we remove the triple :peter rdf:type :Person, then the query does not have a
match. In contrast, our pattern Rewrite(x rdf:type :Mother) could match in either case.

To fix this, we introduce, for every non-distinguished variable x, an additional pattern
MatchExists(x) that verifies that an element of the assumed type is actually derived. This
pattern also ensures that named individuals are always bound to individuals. Anonymous
individuals may be inferred from our assumption that the domain is not empty, or they
must be derived from a named individual, which we represent by a bnode:

{~?Nx := T� . individual(?Mx)}

UNION {~?Nx := F� . ~?Mx := owl:Thing�}

UNION {~?Nx := F� . ~_:b rdf:type ?E� . ?E (rdfs:subClassOf | intListMember |

(owl:onProperty / (Inv | SpoEqp)∗ / (ˆowl:onProperty | rdfs:domain | rdfs:range)) |

ˆowl:equivalentClass | owl:equivalentClass | owl:someValuesFrom)∗ ?Mx}

We do not need to check that this derivation agrees with the guessed parenthood relations,
since the check is only relevant for the elements that do not have a parent represented by
a query variable.

Definition 6. The rewriting Rewrite(q) a CQ q with distinguished variables x1, . . . , xn

is the following SPARQL 1.1 query:

SELECT DISTINCT ?Mx1, . . . , ?Mxn WHERE {
PropConstraints(q)
Rewrite(x rdf:type c) for each condition x rdf:type c in q
Rewrite(x p y) for each condition x p y in q
MatchExists(x) for each variable x in q
EqualityFilter(q)

}

Theorem 4. The answers of a conjunctive query q over an OWL QL ontology G are ex-
actly the answers of the SPARQL 1.1 query Rewrite(q) over G under simple entailment.



6 Limits of Schema-Agnostic Query Rewriting

We have seen that schema-agnostic query rewriting works for (almost) all of OWL QL,
so it is natural to ask how far this approach can be extended. In this section, we outline
the natural limits of SPARQL 1.1 as a query rewriting language, point out extensions to
overcome these limits.

In Section 3, we excluded owl:SymmetricProperty from our considerations. Indeed,
schema-agnostic SPARQL 1.1 queries cannot support this feature. This might be surpris-
ing, given that one can write p rdf:type owl:SymmetricProperty as p rdfs:subPropertyOf
[owl:inverseOf p]. To see why this problem occurs, consider the following ontology:

:c rdfs:subClassOf [rdf:type owl:Restriction; owl:onProperty :p; owl:someValuesFrom owl:Thing] .

[] rdf:type owl:Restriction; owl:onProperty [owl:inverseOf :p]; owl:someValuesFrom owl:Thing;

rdfs:subClassOf :d .

:p rdf:type owl:SymmetricProperty .

This ontology states: every :c has an outgoing :p property; everything with an incoming
:p property is a :d; and :p is symmetric. Clearly, this implies that :c is a subclass of :d.
We call this ontology G(:c, :p, :d). Now assume that we have a chain of such ontologies
Gn B G(:c1, :p1, :c2), . . . ,G(:cn, :pn, :d). Clearly, Gn implies that :c1 rdfs:subClassOf :d,
but there is no SPARQL 1.1 graph pattern with property paths that recognizes this triple
structure in an ontology. The intuitive explanation is that Gn contains a property path of
length 4n that matches the following expression:

(rdfs:subClassOf / owl:onProperty / ˆowl:onProperty / rdfs:subClassOf)∗

A SPARQL query that matches Gn for any n needs to use such a path expression; no
other feature in SPARQL 1.1 can navigate arbitrary distances. However, it is impossible
to verify that each :pi on this path is of type owl:SymmetricProperty. For the formal
proof, we analyze general properties of the graphs that a SPARQL 1.1 query matches [3].
The essence of our argument is that property paths, being linear, cannot reliably detect
an arbitrary number of individuals with more than two neighbors, as found in Gn.

While this limitation is hardly more than a syntactic inconvenience, one might ask if
there are query languages that can deal with this type of encoding. Indeed, one possible
approach is nSPARQL, which has been proposed as an extension of SPARQL 1.0 with
a form of path expressions that can test for the presence of certain side branches in
property paths [14]. Similar test expressions have been considered in OBDA recently
[2]. These query languages can handle the RDF encoding of symmetric properties.

Besides such “syntactic” limitations, schema-agnostic query rewriting is also re-
stricted by complexity theoretic arguments. Simply put, the reasoning task solved in
this way can not be harder (computationally speaking) than the data complexity of the
underlying query language. The data complexity of the subset of SPARQL used in this
paper is NLogSpace: SPARQL 1.1 patters are a variant of positive regular path queries
[7], which have NLogSpace data complexity (by translation to linear Datalog [9]); inline
data (VALUES) does not affect data complexity; and final filtering with equality checks
can clearly be implemented in logarithmic space. Since P is widely assumed to be strictly
harder than NLogSpace (though no proof has been given yet), we can exclude many
lightweight ontology languages:



Theorem 5. If P is strictly harder than NLogSpace, then reasoning for the following
ontology languages cannot be expressed in SPARQL 1.1 using property paths, UNION,
VALUES and (in)equality filters:

– any subset of OWL with owl:intersectionOf in subclass positions, especially OWL EL
and OWL RL;

– any subset of OWL with unrestricted owl:someValuesFrom in subclasses and super-
classes (not limited to owl:Thing);

– the extension of OWL QL with regular property chain axioms.

These complexity-theoretic limitations can only be overcome by using a more
complex query language. Many query languages with P-complete data complexity can
be found in the Datalog family of languages, which are supported by RDF databases like
OWLIM and Oracle 11g that include rule engines.

7 Conclusions and Outlook

To the best of our knowledge, our work is the first to present a query rewriting approach
for ontology-based data access in OWL QL that is completely independent of the on-
tology. The underlying paradigm of schema-agnostic query rewriting appears to be a
promising approach that can be applied in many other settings. Indeed, two previous
works, nSPARQL [14] and PSPARQL [1], independently proposed query-based mech-
anisms for reasoning in RDFS. While these works have not considered SPARQL 1.1,
OWL QL, or arbitrary conjunctive queries, they still share important underlying ideas.
We think that a common name is very useful to denote this approach to query rewriting.

In this paper, we have focused on laying the foundations for this new reasoning pro-
cedure. An important next step is to study its practical implementation and optimization.
Considering the size of some of the queries we obtain, one would expect them to be
challenging for RDF stores. We have started to implement our approach in a prototype
system [3], and initial experiments confirm this expectation. Encouragingly, however,
executing rewritten queries seems to be feasible, even in the raw, unoptimized form they
have in this paper. Future work will be concerned with developing further optimizations
that can be used in practical evaluations.

Indeed, while the queries we obtain might be challenging for current RDF stores,
large parts of the queries are fixed and can be optimized for. Our work thus reduces the
problem of adding OWL QL reasoning support to RDF stores to a query optimization
problem. This can also guide future work in stores, such as OWLIM, which implement
reasoning with inference rules: rather than trying to materialize (part of) an infinite
OWL QL chase [4], they could materialize (sub)query results to obtain a sound and
complete procedure. This provides completely new perspectives on the use of OWL QL
in areas that have hitherto been reserved to OWL RL and RDFS.

Finally, our work also points into several interesting directions for foundational
research, as mentioned in Section 6. Promising approaches include development of
schema-agnostic rewriting procedures for languages like OWL EL that cannot be cap-
tured by SPARQL 1.1, and the development of query languages that suit this task [17].
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