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Abstract One promise of Semantic Web applications is to
seamlessly deal with heterogeneous data. The Extensible
Markup Language (XML) has become widely adopted as an
almost ubiquitous interchange format for data, along with
transformation languages like XSLT and XQuery to trans-
late data from one XML format into another. However, the
more recent Resource Description Framework (RDF) has
become another popular standard for data representation and
exchange, supported by its own query language SPARQL,
that enables extraction and transformation of RDF data. Be-
ing able to work with XML and RDF using a common frame-
work eliminates several unnecessary steps that are currently
required when handling both formats side by side. In this
paper we present the XSPARQL language that, by combin-
ing XQuery and SPARQL, allows to query XML and RDF
data using the same framework and transform data from
one format into the other. We focus on the semantics of this
combined language and present an implementation, includ-
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ing discussion of query optimisations along with benchmark
evaluation.
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1 Introduction

XML (Bray et al 2008) has become a well established and
widely adopted interchange format for data on the Web. Ac-
companying standards, such as XSL Transformations (XSLT)
by Kay (ed.) (2007) and, more recently, XQuery by Cham-
berlin et al (2010), both based on the XML Path Language
(XPath) (Berglund et al 2010), are often used to query XML
data and convert between different XML representations.

In the effort to convert the Web into a Semantic Web,
the Resource Description Framework (RDF) (Manola and
Miller 2004; Hayes 2004) has become the language of choice
for modelling, interlinking and merging data. RDF data
and applications that consume this data are becoming in-
creasingly present on the Web. Opposed to the tree struc-
ture of XML, RDF structures data in sets of triples, repre-
senting edges of a directed, labelled graph. Querying RDF
graphs and converting between them can be performed using
SPARQL (Prud’hommeaux and Seaborne (eds.) 2008), the
W3C recommended query language for RDF.

In many applications combining and converting between
XML and RDF data is a useful but often not trivial task.
The importance of this issue is acknowledged within the
W3C, for instance in the working groups on Gleaning Re-
source Descriptions from Dialects of Languages (GRDDL)
by Connolly (2007) and Semantic Annotations for WSDL
(SAWSDL) by Farrell and Lausen (2007). As we will show,
common approaches for transformations between XML and
RDF, which rely on the standard XML serialisation of RDF
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by Beckett and McBride (eds.) (2004) and on XML tech-
nologies, e.g., XSLT, have several disadvantages. While both
XQuery and SPARQL languages operate on different data
models, respectively the XQuery and XPath Data Model
(XDM) (Fernández et al 2010) for XML and RDF, we show
that the merge of both query languages in the novel lan-
guage XSPARQL has the potential to finally bring XML and
RDF closer together. XSPARQL provides concise and intu-
itive solutions for mapping between XML and RDF in either
direction: operations where both XQuery and SPARQL strug-
gle. In fact it is not possible to use SPARQL alone for such
transformations since the SPARQL query language does not
provide the possibility of handling XML data. On the other
side, the only way to work with RDF data within XQuery is
by relying on the RDF/XML serialisation for RDF graphs.
As we show in Section 2, this approach is hard to imple-
ment due to the different possible serialisations in RDF/XML
for a single RDF graph. An additional use for XSPARQL
is the conversion between RDF graphs. XSPARQL extends
SPARQL’s expressiveness for such transformations, by al-
lowing, for instance, nested XSPARQL queries in the graph
construction step.

Since its first version by Akhtar et al (2008), XSPARQL
has gained community interest and practical use cases have
been presented in a W3C Member Submission (Passant et al
2009). Based on these experiences, the present article makes
the following main contributions:

– we present syntax and formal semantics of XSPARQL
based on the XQuery Formal Semantics by Draper et al
(2010). In comparison to our initial publication, we im-
proved the treatment of nested queries over RDF with
respect to blank nodes and allow for assignment of RDF
graphs to variables;

– our implementation of XSPARQL is based on rewrit-
ing an XSPARQL query into a semantically equivalent
XQuery query; as opposed to the preliminary version of
this rewriting by Akhtar et al (2008), in this paper we
present a more tightly integrated, new prototype imple-
menting several new features;

– we prove various properties of XSPARQL and show
soundness and completeness of the new tighter query
rewriting;

– we present a set of optimisations for complex queries
(containing nested XSPARQL queries) and show their
correctness;

– we introduce a novel benchmark suite (XMarkRDF) that
extends the XMark XML Benchmark suite by also con-
sidering RDF as a data format; and

– based on the XMarkRDF suite, we present benchmark
evaluation of the new XSPARQL prototype and com-
pare it to a related system. Furthermore, we discuss the
performance impact of the proposed optimisations.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:b1 rdf:type foaf:Person; 
     foaf:name "Alice";
     foaf:knows _:b2;
     foaf:knows _:b3.
_:b2 rdf:type foaf:Person; foaf:name "Bob";
     foaf:knows _:b3.
_:b3 rdf:type foaf:Person; foaf:name "Charles".

  <relations>
    <person name="Alice">
      <knows>Bob</knows>
      <knows>Charles</knows>
    </person>
    <person name="Bob">
      <knows>Charles</knows>
    </person>
    <person name="Charles"/>
  </relations>

Lowering

Lifting

relations.xml

relations.rdf

Fig. 1 From XML to RDF and back: “lifting” and “lowering”

The article is organised as follows: Section 2 will illus-
trate our main motivation to come up with a new language by
discussing drawbacks of existing technologies for transfor-
mations between RDF and XML. In Section 3 we will briefly
review the main characteristics of the XQuery and SPARQL
query languages and, in Section 4, present their combination
in the form of the XSPARQL language by defining the formal
semantics and showing semantic properties of the novel lan-
guage. Section 5 shows the architecture and query rewriting
techniques for a prototype implementation. Section 6 dis-
cusses query optimisation techniques that speed up the eval-
uation of XSPARQL queries. We compare XSPARQL with
another prototype that combines SPARQL and XQuery in
Section 7 and report on experimental results using the bench-
mark suite XMarkRDF. We also compare query response
times of the presented optimisations, showing promising re-
sults. We conclude this work with a discussion of related
works in Section 8 and wrap up in Section 9.

2 Motivation: Lifting and Lowering

XML can be viewed as a tree-like data representation format,
with intermediate nodes of this tree being XML elements
or attribute names, and the leaf nodes being either empty
elements or textual attribute values and element content. The
order of child nodes is relevant in XML. As opposed to this,
RDF data, i.e., an RDF graph, is an unordered set of subject-
predicate-object triples, as follows:

Definition 1 (RDF Triple, RDF Graph) Given pairwise
disjoint sets of URI references U, blank nodes B, and lit-
erals L,1 a triple (s, p,o) ∈ UB×U×UBL (often written as
a “statement” ‘s p o .’) is called an RDF triple; sets of RDF
triples are called RDF graphs. We call elements of UBL RDF
terms.

Besides the normative syntax to exchange RDF using XML,
RDF/XML (Beckett and McBride (eds.) 2004), there are
various serialisation formats for RDF, such as RDFa (Adida
et al 2008), a format that allows one to embed RDF within
(X)HTML, or non-XML representations such as the more

1 For brevity we will denote the concatenation of sets by concatenat-
ing their names, e.g., U∪B is represented as UB.
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human-readable Turtle (Beckett and Berners-Lee 2008) syn-
tax. Since data in RDF may be considered on a higher level
of abstraction than semi-structured XML data, the transla-
tion from XML to RDF is often called lifting, while the
opposite direction is called lowering. The importance of con-
verting data between the XML and RDF formats has been
acknowledged within the W3C in several related standardis-
ation efforts, such as GRDDL and SAWSDL. The GRDDL
working group addressed the issue of extracting RDF data
out of existing (X)HTML Web pages (lifting). Likewise in
the Semantic Web Services community, the SAWSDL work-
ing group aimed at defining mechanisms (and link them in
Web service descriptions) to generate XML messages sent to
Web services from RDF data (lowering) and vice versa ex-
tract RDF from service result messages in XML (lifting) (see
Farrell and Lausen 2007; Kopecký et al 2007). Both GRDDL
and SAWSDL use XSLT (although they acknowledge that
other mechanisms could be used) in their examples to per-
form lifting and lowering. In the following, let us illustrate
some drawbacks of this approach.

As a running example throughout this paper we use a
mapping between a custom XML format and RDF as shown
in Fig. 1 (using Turtle syntax for illustration). The task is, in
both directions, to extract for all persons the names of people
they know. URIs denoting predicates and terms in a particular
domain are typically collected under a common namespace
in RDF with a designated prefix, such as RDF core terms
in the namespace http://www.w3.org/1999/02/22-rdf-syntax-ns#
using prefix rdf: or terms of the FOAF (Brickley and Miller
2007) ontology in the namespace http://xmlns.com/foaf/0.1/ us-
ing prefix foaf:.2

Blank nodes are represented in Turtle by the prefix ‘_:’
followed by an identifier/label, or by square brackets ‘[]’.
Blank nodes play a special role in RDF’s data model: they
allow to model unknown nodes or incomplete data, akin to
existential variables. Regarding the serialisation in Turtle that
means, if we would replace _:b1 in Fig. 1 by _:x, it would
represent an equivalent RDF graph.

RDF/XML (Beckett and McBride (eds.) 2004) is the rec-
ommended syntax for RDF, using XML as the underlying rep-
resentation model. This format enables the use of XML tools
such as XSLT or XQuery to translate between RDF/XML
and other XML formats. However, such a transformation is
greatly complicated by the flexibility the RDF/XML format
offers in serialising RDF graphs. Therefore, tools that handle
RDF/XML as XML data (and not as a sets of triples) need
to take different possible representations into account. Fig. 2
shows four versions of a subset of the RDF data from our
running example that represent the same FOAF data. Fig. 2a
uses Turtle (Beckett and Berners-Lee 2008), a simple and
readable textual format for RDF, inaccessible to pure XML

2 In listings and figures we sometimes abbreviate well-known names-
pace URIs with “. . . ”.

@prefix alice: <alice/> .
@prefix foaf: <...foaf/0.1/> .

_:b1 rdf:type foaf:Person;
foaf:knows _:b2.

_:b2 rdf:type foaf:Person;
foaf:name "Bob".

(a) Turtle

<rdf:RDF xmlns:foaf="...foaf/0.1/">
<foaf:Person>
<foaf:knows>

<foaf:Person foaf:name="Bob"/>
</foaf:knows>

</foaf:Person>
</rdf:RDF>

(b) Concise XML/RDF

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">
<rdf:Description rdf:nodeID="b1">

<rdf:type
rdf:resource=".../Person"/>

<foaf:knows rdf:nodeID="b2"/>
</rdf:Description>
<rdf:Description rdf:nodeID="b2">

<rdf:type
rdf:resource=".../Person"/>

<foaf:name>Bob</foaf:name>
</rdf:Description>

</rdf:RDF>

(c) XML/RDF

<rdf:RDF xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#">

<rdf:Description rdf:nodeID="x">
<foaf:knows rdf:nodeID="y"/>

</rdf:Description>
<rdf:Description rdf:nodeID="x">

<rdf:type rdf:resource=".../Person"/>
</rdf:Description>
<rdf:Description rdf:nodeID="y">

<foaf:name>Bob</foaf:name>
</rdf:Description>
<rdf:Description rdf:nodeID="y">

<rdf:type rdf:resource=".../Person"/>
</rdf:Description>

</rdf:RDF>

(d) Verbose XML/RDF

Fig. 2 Different representations of the same RDF graph

processing tools though; the remaining three versions are all
RDF/XML, ranging from concise (2b) to verbose (2d). These
three RDF/XML variants represent different XML trees but
the same RDF graph. Note that blank node identifiers may
disappear or change through XML serialisation.

For our running example, let us attempt lifting and lower-
ing transformations using XSLT (we will get to XQuery as
another alternative in more detail later on).

Lifting. The XSLT stylesheet in Fig. 3a for instance, could
be used to generate RDF/XML (in the format presented in
Fig. 2b) from the relations.xml file in Fig. 1. However, this
first attempt does not yet accomplish the intended transforma-
tion since unique identifiers are not created for each person.
This is easy to see in the Turtle version of the result of this
transformation (presented in Fig. 3b): while in our example
names should uniquely identify a person, in this transforma-

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://xmlns.com/foaf/0.1/
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<xsl:stylesheet xmlns:xsl="...XSL/Transform"
xmlns:foaf="...foaf/0.1/"
xmlns:rdf="...rdf-syntax-ns#" version="2.0">

<xsl:template match="/relations">
<rdf:RDF> <xsl:apply -templates /> </rdf:RDF>

</xsl:template>

<xsl:template match="person">
<foaf:Person>

<foaf:name>
<xsl:value -of select="./@name"/>

</foaf:name>
<xsl:apply -templates/>

</foaf:Person>
</xsl:template>

<xsl:template match="knows">
<foaf:knows><foaf:Person><foaf:name>

<xsl:apply -templates/>
</foaf:name></foaf:Person></foaf:knows>

</xsl:template>

</xsl:stylesheet>

(a) XSL transform lifting.xsl

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
_:b1 a foaf:Person; foaf:name "Alice" ;

foaf:knows _:b2 ; foaf:knows _:b3 .
_:b2 a foaf:Person ; foaf:name "Bob" .
_:b3 a foaf:Person ; foaf:name "Charles" .
_:b4 a foaf:Person ; foaf:name "Bob" ;

foaf:knows _:b5 .
_:b5 a foaf:Person ; foaf:name "Charles" .
_:b6 a foaf:Person ; foaf:name "Charles" .

(b) Result in Turtle

Fig. 3 Lifting attempt by XSLT

<xsl:stylesheet version="1.0"
xmlns:rdf="...rdf-syntax-ns#"
xmlns:foaf="...foaf/0.1/"
xmlns:xsl="...XSL/Transform">

<xsl:template match="/rdf:RDF">
<relations>

<xsl:apply -templates select=".//foaf:Person"/>
</relations>

</xsl:template>
<xsl:template match="foaf:Person">

<person name="{./@foaf:name}">
<xsl:apply -templates select="./foaf:knows"/>

</person>
</xsl:template>
<xsl:template match="foaf:knows[@rdf:nodeID]">

<knows>
<xsl:value -of
select="//foaf:Person[@rdf:nodeID=./@rdf:nodeID]/

@foaf:name"/>
</knows>

</xsl:template>
<xsl:template match="foaf:knows[foaf:Person]">

<knows>
<xsl:value -of select="./foaf:Person/@foaf:name"/>

</knows>
</xsl:template></xsl:stylesheet>

Fig. 4 Lowering using XSLT (lowering.xsl )

tion the same person is potentially given several different
blank nodes.

Although, a proper lifting transformation catering for all
possible XML serialisations is doable in XSLT, the corre-
sponding stylesheet would need to be far more involved.

@prefix rel: <http://purl.org/vocab/relationship/>
_:b1 rdf:type foaf:Person; foaf:name "Alice";

rel:engagedTo _:b2; rel:worksWith _:b3.
_:b2 rdf:type foaf:Person; foaf:name "Bob";

rel:hasMet _:b3.
_:b3 rdf:type foaf:Person; foaf:name "Charles".

Fig. 5 RDF data using the relationship ontology

Lowering. The simple XSLT stylesheet lowering.xsl in
Fig. 4 is an attempt to perform the lowering task directly
from RDF/XML. However, this XSLT will break if the input
RDF/XML serialisation is in any other variant than the ver-
sion in Fig. 2b. We could create a specific stylesheet for each
of the presented variants, but creating one that handles all the
possible RDF/XML forms would be much more complicated.

Apart from its syntactic ambiguities, processing RD-
F/XML via XSLT also loses another feature of RDF, namely
its interplay with ontological information, e.g., RDF Schema.
RDF Schema (Brickley and Guha 2004) (RDFS) allows to
express subclass or subproperty hierarchies, which can be
exploited by RDF tools capable of ontological inference.
The RDF data from Fig. 1 could – rather than foaf:knows –
use predicates from the relationship ontology,3 which are all
stated as subproperties of foaf:knows, as presented in Fig. 5.
Similar considerations would apply if we attempted to per-
form the lifting and lowering using XQuery: since XML tools
do not support ontological inference, we literally would need
to implement an RDFS inference engine within XSLT or
XQuery, to be able to implement a lowering mechanism that
also works for this kind of RDF data. Given the availability
of RDF tools and engines that readily offer RDFS support,
this seems to be a dispensable exercise.

Benefits of an integrated language. In recognition of the
above problems, the SAWSDL specification contains a non-
normative example which performs a lowering transforma-
tion as a sequence of a SPARQL query followed by an
XSLT transformation on SPARQL’s query results XML for-
mat (Clark et al 2008). The advantage of such a two-step
approach is firstly that since SPARQL works on the RDF
data model, all the input data from Fig. 2 is considered to be
equivalent. Second, if one deploys a SPARQL engine that
supports RDFS inference also input data that involves onto-
logically related RDF vocabularies could be dealt with. For
example to get all persons who work with (rel:worksWith)
or have met (rel:hasMet) Charles from the FOAF data de-
scribed in Fig. 5, a simple SPARQL query would be enough:
select $person from <foaf.rdf>
where { $person foaf:knows [ foaf:name "Charles" ] . }

Although the approach proposed by the SAWSDL Work-
ing Group provides a good starting point, we argue that it
can still be improved on several points: firstly, the detour
through SPARQL’s XML query results format seems to be

3 http://vocab.org/relationship/

http://vocab.org/relationship/
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Prolog: P declare namespace
prefix="namespace-URI"

Body:

F for var [at posVar] in FLWOR expression
L let var := FLWOR expression
W where FLWOR expression
O order by FLWOR expression

Head: R return XML+ nested FLWOR expressions

(a) Simplified schematic view on XQuery

Prolog: P prefix prefix: <namespace-URI>
Head: C construct { template }

Body:

D from / from named <dataset-URI>
W where { graph pattern }
M order by expression

limit integer > 0
offset integer > 0

(b) Simplified schematic view on SPARQL

Fig. 6 An overview of XQuery and SPARQL

an unnecessary burden. Secondly, a more tightly-coupled in-
tegration of SPARQL and XML query languages can provide
a more expressive language, beyond the capabilities of using
SPARQL and XSLT or XQuery sequentially, and directly
amenable to query optimisations. XSPARQL, the language
proposed in the present paper, aims to provide exactly this:
use cases that otherwise would require interleaved calls to
SPARQL (typically requiring an implementation using an ex-
ternal programming framework) can be solved in XSPARQL
directly, cf. the lowering example in Fig. 10. Moreover, as we
will see, the combined language not only allows for concise
lifting and lowering, but also may be viewed as an extension
of SPARQL for RDF-to-RDF transformations, cf. the exam-
ple in Fig. 8b below. Before we turn to these examples and
XSPARQL in more detail, let us give a short overview of the
languages XSPARQL builds on: XQuery and SPARQL.

3 Preliminaries

XQuery allows for a convenient and concise syntax for XML
query processing and XML transformation, while SPARQL
is the standard for RDF querying and transformation. One of
the major differences between XQuery and SPARQL resides
on the ordering of their respective data models: while XML
(and hence XQuery) is an intrinsically ordered data model,
RDF is an unordered data model. As such, necessary mecha-
nisms must be in place to ensure XQuery respects the order-
ing of the input. Queries in each of the two languages can
roughly be divided in two parts: (i) the retrieval part (body)
and (ii) the result construction part (head) this is presented
schematically in Fig. 6. Our goal is to combine these compo-
nents for both languages in a unified language, XSPARQL,
where XQuery’s and SPARQL’s heads and bodies may be
used interchangeably and even nested. We next outline some
of the main aspects of XQuery and SPARQL relevant to their
combination into XSPARQL. For a more detailed overview
of XQuery and SPARQL we refer the reader to (Chamberlin

1 declare namespace foaf="...foaf/0.1/";
2 declare namespace rdf="...-syntax-ns#";
3 let $persons := //*[@name or ../knows]
4 let $positions := distinct -values(
5 for $p in $persons return
6 if( $p[@name] ) then $p/@name

else data($p))
7 return
8 <rdf:RDF> {
9 for $n in $positions

10 let $id := fn:index-of($positions , $n)
11 return
12 <foaf:Person rdf:nodeId="b{$id}">
13 <foaf:name> { $n } </foaf:name>
14 { for $k in $persons[@name=$n]/knows
15 let $kn := if( $k[@name] ) then $k/@name else

data($k)
16 let $kid := fn:index-of($positions , $kn)
17 return
18 <foaf:knows>
19 <foaf:Person rdf:nodeID="b{$kid}"/>
20 </foaf:knows>
21 }
22 </foaf:Person>
23 } </rdf:RDF>

Fig. 7 Lifting using XQuery

et al 2010; Draper et al 2010) and to (Prud’hommeaux and
Seaborne (eds.) 2008; Pérez et al 2009).

3.1 XQuery

XQuery consists mainly of so-called FLWOR expressions,
denoting the body (FLWO) and the head (R) of a query. The
ForClauses (F) can be used to declare variables that iterate
over XML sequences, returned, e.g., by an XPath expres-
sion, while let assignments (L) allow to bind values, e.g.,
the entire result of an XPath expression, to variables. A filter
condition on the current variable bindings or processing order
of results within a ForClause can be specified in the where

part (W) and by the order by clause (O), respectively. In
the head (R) arbitrary well-formed XML, nested XQuery
expressions, or previously assigned variables are allowed fol-
lowing the return keyword. Together with a large catalogue
of built-in functions (Malhotra et al 2010), XQuery offers a
flexible instrument for arbitrary XML transformations.

The lifting task of Fig. 1 on page 2 can be solved with
XQuery as shown in Fig. 7.4 Please note that, due to the na-
ture of XQuery, in this query we are generating RDF/XML,
opposed to the more concise Turtle syntax from Fig. 1. The re-
sulting query is quite involved, but completely addresses the
lifting task, including unique blank node generation for each
person. We first select, in variable $persons (line 3), all nodes
representing person names: either person or knows nodes and
next, for each different name, we keep a sequence with all the
distinct person names (stored in variable $positions), which
we will use as the blank node identifier for the person. Iterat-

4 We assume this query is executed with the context item set exter-
nally to the document node of relations.xml file presented in Figure 1.
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ing over these distinct person names, we determine the person
identifier (line 10). The nested for (lines 14–23) again iterates
over persons in order to create nested foaf:knows elements:
for each person name ($n) from the outer for expression, this
nested expression selects the XML nodes that correspond to
persons which $n knows (line 14) and creates the correspond-
ing foaf:knows elements (lines 18–20). While this is a valid
solution for lifting, we still observe the following drawbacks:
(1) We still have to build RDF/XML manually and cannot
make use of the more readable and concise Turtle syntax;
and (2) if we had to apply XQuery for the lowering task, we
still would need to cater for all kinds of different RDF/XML
representations. Thus we still face the same problems as dis-
cussed in the XSLT solution in Section 2. However, both
these drawbacks will be alleviated by adding SPARQL to
XQuery. By combining XQuery and SPARQL, XSPARQL
also simplifies the lifting process by allowing to use SPARQL
ConstructClauses that generate RDF in Turtle format and
by performing automatic validation of the generated RDF
graphs.

Semantics. Next, let us give a short overview of the XQuery
Formal Semantics (Draper et al 2010), on which we will base
XSPARQL’s semantics; it is defined essentially via three
types of rules: (i) normalisation rules, (ii) static typing rules,
and (iii) dynamic evaluation rules. Normalisation rules are
used to rewrite arbitrary XQuery expression to the XQuery
Core language – a subset of XQuery that, while semantically
equivalent, aims to be easier to define, implement and opti-
mise (Katz et al 2003). Static typing rules are used to assign
a type to each XQuery expression, while the dynamic evalua-
tion rules are responsible for producing the resulting XML
from each expression and guaranteeing that the expression
input is consistent with the typing information determined
during the static analysis step. Any XQuery expression E is
evaluated with regards to an expression context C that holds
the static environment (statEnv) and the dynamic environ-
ment (dynEnv) up until the evaluation of E. Environments are
composed of different components and hold information nec-
essary to the evaluation of any XQuery expression: statEnv
holds the information available during static analysis, for
example the varType component holds variable type infor-
mation, while the dynEnv environment contains information
available during expression evaluation, like the value for vari-
ables that is stored in the varValue component. We refer to
the static environment of C as statEnv(C) and to the dynamic
environment as dynEnv(C) and we can access the different
components by name: statEnv(C) .varType and the specific
value for element var of the a context can be accessed using
statEnv(C) .varType(var). In case the expression context C
is not explicitly presented, statEnv and dynEnv can be used
in place of statEnv(C) and dynEnv(C).

Normalisation rules are represented using mapping rules
and, as an example, we present the following rule from (Draper

et al 2010) that illustrates the normalisation of consecutive
ForClauses into XQuery Core:

u

wwww
v

for $VarName1 OptTypeDeclaration1
OptPosVar1 in Expr1

, · · · ,
$VarNamen OptTypeDeclarationn
OptPosVarn in Exprn ReturnClause

}

����
~

Expr

==

for $VarName1 OptTypeDeclaration1
OptPosVar1 in JExpr1KExpr return

· · ·
for $VarNamen OptTypeDeclarationn
OptPosVarn in JExprnKExpr JReturnClauseKExpr

(N1)

In normalisation rules, fixed-width font (like for) refer to
specific keywords, and italic font refer to productions in
the XQuery Core grammar (Draper et al 2010, Appendix A).
Static type rules and dynamic evaluation rules are represented
using inference rules. For instance, the following static typing
rule from (Draper et al 2010) ensures that no expression has
empty type except the empty sequence and functions in the fs
namespace that are applied to empty parentheses ():

statEnv ` Expr : Type
statEnv ` Type <: empty

not
(

Expr is the empty parentheses () or fn:data()
or any fs function applied to empty parentheses ()

)
A static type error is raised for expression Expr

(S1)

The judgements statEnv ` Expr : Type and statEnv ` Type <: empty
hold when, in the static environment statEnv, both Expr has
type Type and Type is a subtype of empty, respectively. For
all details of the XQuery Semantics we refer the reader
to (Draper et al 2010).

Typing. Fernández et al (2010) describe the XQuery and
XPath Data Model (XDM) that is used to define the input to
XQuery and the values of any XPath expression. Draper et al
(2010, Section 2.4) describe the formal notation for types that
we use throughout this paper. This representation of types is
used for specification purposes only and is not exposed to the
end user by XQuery. As Draper et al (2010, Section 8.3.1)
describe, it is possible to match a Value against a specific
Type by using the judgement Value matches Type.

3.2 SPARQL

In analogy to FLWOR in XQuery, we will denote its cor-
respondent “DWMC expressions” in SPARQL. The body
(DWM) offers the following features: a dataset (D), i.e.,
the set of (named) source RDF graphs, is specified in from

(or from named) clauses. The where part (W) allows match-
ing parts of the dataset by specifying a graph pattern. Such
patterns can be simple triple patterns possibly involving vari-
ables, URI references, and literals,5 or unions of graph pat-

5 Note that we do not allow blank nodes in graph patterns, and
thus do not consider them in our definitions. This restriction does not
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terns, optional patterns matching of parts of a graph, or pat-
terns matching of named graphs, etc.

Definition 2 (Graph Patterns, Pérez et al 2009) Let V be
an infinite set of variables, graph patterns are inductively
defined as follows:

– a tuple (s, p,o) ∈ ULV×UV×ULV, called triple pat-
tern, is a graph pattern;

– a set of triple patterns, called Basic Graph Pattern (BGP),
is a graph pattern;

– if P and P′ are graph patterns, then (P P′), (P optional P′),
and (P union P′) are graph patterns;

– if P is a graph pattern and i ∈ UV, then (graph i P) is a
graph pattern; and

– if P is a graph pattern and R is a filter expression,
then (P filter R) is a graph pattern.

For any pattern P, we write vars(P) for the set of all variables
occurring in P. A filter expression R can be composed from
constants, elements of ULV, comparison operators (‘=’,‘<’,
‘>’,‘≤’,‘≥’) and logical connectives (‘¬’,‘∧’, ‘∨’) and built-
in functions.6

The evaluation semantics of SPARQL consists of computing
a sequence of solution mappings, i.e., sets of bindings for the
variables in these patterns, matching them against the graphs
in the dataset. Sequences of solution mappings as referred to
simply as solution sequences.

SPARQL is agnostic to the actual XML representation
of the underlying source graphs, which alleviates the pain
of having to deal with different RDF/XML representations
of the graphs in the dataset. Also the merge of several RDF
source graphs (Hayes 2004) specified in consecutive from

clauses, which could involve renaming of blank nodes at the
pure XML level, comes for free in SPARQL. Solution se-
quences can be ordered or sliced using solution modifiers (M)
order by, limit, and offset.

In the head, SPARQL’s construct clause (C) offers con-
venient and XML-independent means to create an output
RDF graph. A construct template consists of a list of triple
patterns in Turtle syntax. By instantiating this template with
the variable bindings computed in the body, a result graph
is created, which enables SPARQL to be used as a trans-
formation language between different RDF formats (similar
to XSLT and XQuery for transforming between XML for-
mats). A simple example for mapping full names from the
vCard/RDF (Iannella 2010) format to foaf:name is given by
the SPARQL query in Fig. 8a. Blank nodes in construct

templates – as used in the query in Fig. 8b – play a special

affect the expressivity of SPARQL, implicit in Pérez et al (2009), since
blank nodes in query patterns can always be replaced equivalently with
variables. See discussion in Section 4.2 below.

6 For a complete list of built-in functions we refer the reader
to (Prud’hommeaux and Seaborne (eds.) 2008).

prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>
construct {$X foaf:name $FN.}
from <vc.rdf>
where { $X vc:FN $FN .}

(a) Mapping full names from vCard to
FOAF in SPARQL

prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>
construct { [] foaf:name

{fn:concat($N," ",$F)}. }
from <vc.rdf>
where { $P vc:Given $N. $P vc:Family $F. }

(b) Mapping a given and family name to a full name
in XSPARQL

Fig. 8 RDF-to-RDF mappings in SPARQL and in XSPARQL

role, in that they are replaced by a fresh blank node for each
solution sequence in the result graph.

Other possible types of SPARQL queries include select,
ask and describe queries: select queries simply return the
bindings for variables present in the query (instead of us-
ing these bindings to instantiate the template like a con-

struct clause), ask queries return a boolean answer, indi-
cating whether the graph pattern produces any results and
describe queries are used to return information about a re-
source. For the aims of XSPARQL we support the Construct-
Clause that allows to produce RDF and the select expression
that allows us to input RDF data – although with a different
syntax as explained in Section 4.1.

Let us remark that SPARQL does not cater for the cre-
ation of new values, which on the contrary is an inherent
feature of XQuery. By combining XQuery and SPARQL, we
are also enabling SPARQL to use the full range of XPath/X-
Query built-in functions (Malhotra et al 2010). Due to this,
the query in Fig. 8b which attempts to merge family names
and given names into a single foaf:name by calling the
fn:concat function is beyond SPARQL’s capabilities. As
we will see, XSPARQL will not only reuse SPARQL for
transformations from and to RDF, but also enable such ad-
vanced RDF-to-RDF transformations.

Semantics. The semantics of SPARQL is defined by means
of evaluation rules which are presented by Prud’hommeaux
and Seaborne (eds.) (2008, Section 12.5). Here we only give
an overview of the notion of Basic Graph Pattern (BGP)
matching, that we will use later to define the semantics of
XSPARQL.

The matching of BGPs is done with regards to a specific
RDF graph – the active graph – which is a graph contained in
the dataset specified to the query. This matching is defined in
terms of replacing variables from the BGP with RDF terms
present in the active graph, where the function that maps
query variables to RDF terms is called a solution mapping.

Definition 3 (Solution Mapping) A solution mapping (see
Prud’hommeaux and Seaborne (eds.) 2008, Section 12.1.6) is
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a partial function mapping SPARQL variables to RDF terms.
The domain of a solution mapping µ , denoted dom(µ), is
the set of variables for which µ is defined. Furthermore, we
denote the value of variable v ∈ V according to solution µ

as µ(v). Two solution mappings µ1 and µ2 are compatible if
for any v ∈ dom(µ1)∩dom(µ2) it holds that µ1(v) = µ2(v).
The union of two compatible mappings µ1 and µ2 consists
of the standard set-theoretical union µ1∪µ2.

The replacement of variables in a graph pattern according to
a solution mapping is defined next.

Definition 4 Let P be a graph pattern and µ be a solution
mapping. The variable substitution of P by µ , denoted µ(P),
is the graph pattern P with all variables v∈ vars(P)∩dom(µ)

substituted by µ(v).

Finally, the definition of BGP matching from Prud’hommeaux
and Seaborne (eds.) (2008, Section 12.3) specifies the solu-
tions to a query.

Definition 5 (Basic Graph Pattern Matching) We say µ

is a solution for a BGP P with respect to the active graph
G, if there exists a solution mapping µ ′ such that µ ′(P) is a
subgraph of G and µ is the restriction of µ ′ to the variables
in vars(P).

The definition of BGP matching is extended to more complex
SPARQL query patterns (including union, optional, graph,
filter, etc.) by the SPARQL algebra (Prud’hommeaux and
Seaborne (eds.) 2008, Section 12.4), such that the where

clause of every SPARQL query – i.e., any DWM body –
returns a list of solutions. We denote this evaluation of a
SPARQL Graph Pattern P over a dataset D as eval(D,P). As
presented by Pérez et al (2009), the evaluation of a SPARQL
graph pattern can be specified by mapping the graph pattern
to relational algebra operators. Since Perez et al. deal with
set-based semantics of SPARQL, here we extend their notion
of the join operator to solution sequences. Let Ω1 and Ω2 be
two solution sequences, then Ω1 ./ Ω2 = ToList({µ1∪µ2 |
(µ1,µ2)∈ ToMultiSet(Ω1)×ToMultiSet(Ω2) , µ1 and µ2 are
compatible}), where by × we denote the Cartesian product
of the multisets and ToList() is, as per the SPARQL specifi-
cation Prud’hommeaux and Seaborne (eds.) (cf. 2008, Sec-
tion 12.4), an operation that turns a multiset into a sequence
with the same elements and arbitrary ordering. Analogously
to the ToList() operation, ToMultiSet() converts a sequence
into a multiset by preserving duplicates but disregarding the
sequence ordering.

For further details on the SPARQL query language, we
refer the reader to the W3C specification (Prud’hommeaux
and Seaborne (eds.) 2008).

Next, we define the notion of inclusion of solution se-
quences.

Definition 6 Let Ω1 and Ω2 be solution sequences. We say Ω1
is included in Ω2, denoted Ω1 �Ω2, if for all solution map-
pings µ1 ∈ ToMultiset(Ω1) there exists a solution mapping
µ2 ∈ ToMultiset(Ω2) such that µ1 ⊆ µ2.

Please note that this definition extends the notion of subset
between multisets by considering also the subset relation be-
tween their elements, i.e. solution mappings. This definition
will be required for the optimisations presented in Section 6.
Since the presented optimisations are not order preserving
we rely only on the notion of inclusion.
In a construct query, the solutions of the pattern in the where

clause of the body are then used to instantiate the construct

template and the result graph is obtained from the union of
all valid RDF triples resulting from such instantiation. As
mentioned before, for each solution, blank nodes occurring
in a construct template are replaced by new blank nodes
with new identifiers.

Apart from construct queries, which we mainly focus
on here, SPARQL also allows select queries, which return
sequences of variable bindings, obtained from projecting
only solution mappings for a given list of variables.

4 XSPARQL

Conceptually, XSPARQL is a merge of SPARQL construct

queries into XQuery. This combination of languages allows
us to benefit from the facilities of SPARQL for retrieving
RDF data and to use Turtle-like syntax for constructing RDF
graphs, while still having access to all the features from
XQuery for XML processing. In XSPARQL we allow any
native XQuery query and we extend XQuery’s FLWOR ex-
pressions to what we call FLWOR’ expressions:

(i) In the body we allow SPARQL-style F’DWM blocks
alternatively to XQuery’s FLWO blocks. The new F’
clause of the form for varlist is very similar to XQuery’s
native ForClause, but instead of allowing a single vari-
able (which is assigned to the results of an XPath ex-
pression), the new clause supports a white space sepa-
rated list of variables (varlist). Each variable in varlist
is then assigned the value resulting from evaluating a
SPARQL query of the form: select varlist DWM.

(ii) In the head we allow to create RDF graphs directly us-
ing construct templates (C) alternatively to XQuery’s
native return (R).

(iii) Different forms of nesting are allowed, for example
subqueries that construct RDF graphs may appear in
let assignments which are later used in SPARQL-style
from clauses, or can be used for value construction
within SPARQL-style construct templates.

These modifications allow us to reformulate the lifting
query of Fig. 7 on page 5 into its slightly more concise
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1 declare namespace foaf="...foaf/0.1/";
2 declare namespace rdf="...-syntax-ns#";
3 let $persons := //*[@name or ../knows]
4 let $positions := distinct -values(
5 for $p in $persons return
6 if( $p[@name] ) then $p/@name

else data($p))
7 return
8 for $n in $positions
9 let $id := fn:index-of($positions , $n)

10 construct {
11 _:b{$id} a foaf:Person ; foaf:name {data($n)} .
12 { for $k in $persons[@name=$n]/knows
13 let $kn := if( $k[@name] ) then $k/@name else data

($k)
14 let $kid := fn:index-of($positions , $kn)
15 construct {
16 _:b{$id} foaf:knows _:b{$kid} .
17 _:b{$kid} a foaf:Person .
18 } } }

Fig. 9 Lifting in XSPARQL

declare foaf = "http://xmlns.com/foaf/0.1/";
<relations > {
for $Person $Name from <relations.rdf>
where { $Person foaf:name $Name }
order by $Name
return

<person name="{$Name}"> {
for $FName
where {

$Person foaf:knows $Friend .
$Friend foaf:name $Fname

}
return <knows>{$FName}</knows>

} </person>
} </relations >

Fig. 10 Lowering using XSPARQL

XSPARQL version of Fig. 9. The real power of XSPARQL in
our example becomes apparent on the lowering part, where
all of the other languages observed so far struggled. The
lowering query for our running example is shown in Fig. 10.

4.1 Syntax of XSPARQL

In more detail, the XSPARQL syntax is an extension of the
grammar rules in XQuery (Chamberlin et al 2010). Fig. 11
shows a schema of our merge of XQuery and SPARQL. For
the definition of the XSPARQL syntax, we assume to inherit
all the grammar productions of SPARQL (Prud’hommeaux
and Seaborne (eds.) 2008) and XQuery (Chamberlin et al
2010) and mark any modified grammar productions with the
prime symbol (′). We introduce two new productions: Sparql-
ForClause and ConstructClause, corresponding to roughly
to SPARQL select queries and construct templates; we
present the grammar productions for these in Fig. 12. The
full XSPARQL grammar can be found in (Bischof 2010). In
these grammar productions, the WhereClause and Solution-
Modifier correspond respectively to rules [13] and [14] from
the SPARQL grammar, cf. (Prud’hommeaux and Seaborne
(eds.) 2008, Appendix A.8). The newly introduced Sparql-

Prolog: P declare namespace prefix="namespace-URI"
or prefix prefix: <namespace-URI>

Body:

F for var [at posVar] in FLOWR’ expression
L let var := FLWOR’ expression
W where FLWOR’ expression
O order by FLWOR’ expression or
F’ for varlist [at posVar]
D from /from named ( <dataset-URI> or var)
W where { pattern }
M order by expression

limit integer > 0
offset integer > 0

Head:
C construct

{ template (with nested FLWOR’ expressions) } or
R return XML+ nested FLWOR’ expressions

Fig. 11 Schematic view of XSPARQL

ForClause (rule [33a]) is similar to an XQuery for clause
that can be used to iterate over SPARQL results.7 This ex-
pression stands at the same level as XQuery’s for and let

expressions, i.e., such type of clauses are allowed to start new
FLWOR’ expressions, or may occur inside deeply nested
XSPARQL queries. The ConstructTemplate’ expression is de-
fined in the same way as the production ConstructTemplate
in SPARQL (Prud’hommeaux and Seaborne (eds.) 2008),
but we additionally allow nested XSPARQL expressions
(FLWORExpr’) in subject, predicate, and object positions;
we achieve this by replacing SPARQL syntax rules Verb and
VarOrTerm for ConstructTemplate with the rules VarOrTerm’
and Verb’ represented in Fig. 12b.8

The rules for SourceSelector from the SPARQL syntax
are also extended (as presented in Fig. 12c), i.e., we allow
for graphs in a SPARQL dataset to be specified by a variable
which must evaluate to a URI.

In analogy to SPARQL’s select * shortcut, we allow to
write for * in place of for [list of all unbound variables
appearing in the WhereClause] for SparqlForClauses; as
syntactic sugar this is also the default value for the F’ clause
whenever a SPARQL-style WhereClause is found and a cor-
responding F’ clause is missing. Please note that for Sparql-
ForClauses we do not allow XQuery QNames as variable
names (further details are available in Draper et al 2010, Sec-
tion 3.1.1.1) and assume that only unprefixed variables are
shared between the XQuery and SPARQL expressions of
XSPARQL. By this treatment, XSPARQL becomes a syntac-
tic superset of native SPARQL construct queries, since we
additionally allow the following:

(1) XQuery and SPARQL namespace declarations (P) may
be used interchangeably; and

(2) SPARQL-style construct result forms (C) may appear
before the retrieval part for queries. This feature is mainly
added in order to encompass SPARQL style queries, but

7 This expression does not have the exact semantics of a SPARQL
select clause – returning bindings to variables – but rather adds new
variables to the query, hence a syntax inspired by the existing XQuery
ForClauses was chosen.

8 These changes are highlighted in Fig. 12 by using bold face.
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(a)
[33] FLWORExpr’ ::= (((ForClause | LetClause)+ XQWhereClause? OrderByClause?) | SparqlForClause)

("return" ExprSingle | ConstructClause)
[33a] SparqlForClause ::= "for" (VarName+ | "*") DatasetClause? WhereClause? SolutionModifier
[33b] ConstructClause ::= "construct" ConstructTemplate’

(b) [37] Verb’ ::= VarOrIRIref | "a" | "{" FLWORExpr’ "}"
[42] VarOrTerm’ ::= Var | GraphTerm | "{" FLWORExpr’ "}"

(c) [12] SourceSelector’ ::= IRIref | "$" VarName

Fig. 12 (a) XSPARQL core syntax elements, extending (Chamberlin et al 2010, Appendix A) (b) modified ConstructTemplate syntax elements,
extending (Prud’hommeaux and Seaborne (eds.) 2008, Appendix A) (c) modified DatasetClause syntax elements, extending (Prud’hommeaux and
Seaborne (eds.) 2008, Appendix A)

in principle, we expect the (R/C) parts to appear in the
end of a FLWOR’ expression.

Thus, the query of Fig. 8a on page 7 or any other SPARQL
construct queries remain valid syntax for XSPARQL.

4.2 Semantics of XSPARQL

Next we define the semantics of XSPARQL. After introduc-
ing some new types, used in the semantics, and an extension
to the normalisation rules of XQuery ForClauses, we will
turn to extending the notion of Basic Graph Pattern matching
(Section 4.2) to make SPARQL clauses aware of the bindings
for variables from XQuery. Then, we present the seman-
tics of the newly introduced expressions: SparqlForClause
(Section 4.2) and ConstructClause (Section 4.2), based on
XQuery’s formal semantics (Draper et al 2010), by defining
normalisation, static type and dynamic evaluation rules for
each of the new expressions.

XSPARQL Types. We extend the XQuery and XPath Data
Model (XDM), described by Fernández et al (2010), with the
following new types that accommodate for SPARQL specific
parts of XSPARQL:

(1) the RDFTerm type further consists of the subtypes uri,
bnode and literal and is used as the type of SPARQL
variables;

(2) the PatternSolution type consists of a set of pairs (var-
iableName, RDFTerm) representing SPARQL variable bind-
ings;

(3) the RDFGraph is the type of construct expressions; and
(4) the RDFDataset as the type for DatasetClauses.

The formal definition of (1)–(4) is given in Fig. 13. The
RDFTerm type is used to represent RDF terms (composed
of URIs, blank nodes or literals). The type of SPARQL
variables are represented by the Binding type, that consists
of the variable name and the RDF term that is assigned
to it. Finally, sequences of SPARQL variable bindings are
represented by the type PatternSolution. This representa-
tion of SPARQL results is similar to the XML Schema
of the SPARQL Query Results XML Format, available at
http://www.w3.org/2007/SPARQL/result.xsd.

define type URI-reference restricts xs:anyURI;
define type Literal extends xs:string {

attribute datatype of type URI-reference?,
attribute lang of type xml:lang? };

define type RDFTerm {
element uri of type URI-reference |
element bnode of type xs:string |
element literal of type Literal };

define type Binding extends RDFTerm {
attribute name of type xs:string };

define element binding of type Binding;
define type Result {

element binding* };
define type PatternSolution {

element result of type Result };
define type RDFGraph {

element triple of type RDFTriple* };
define type RDFTriple {

element subject of type RDFTerm,
element predicate of type RDFTerm,
element object of type RDFTerm };

define element dataset of type RDFDataset;
define type RDFDataset {

element defaultGraph of type RDFGraph,
element namedGraphs of type RDFNamedGraphs };

define type RDFNamedGraphs {
element namedGraph of type RDFNamedGraph* };

define type RDFNamedGraph {
attribute name of type xs:string,
element graph of type RDFGraph };

Fig. 13 XSPARQL Type Definitions

The RDFGraph type corresponds to a sequence of RDF-

Triples which are in turn a complex type composed of sub-
ject, predicate and object. The RDFDataset type is defined
as an RDFGraph that is considered the default graph and a
sequence of RDFNamedGraphs represented by the name of the
graph and the corresponding RDFGraph.

The following definition presents the translation between
a SPARQL solution sequence and a sequence of Result type
elements that we implement in XSPARQL.

Definition 7 (Serialisation of Solution Sequences) Given
a solution sequence Ω = (µ1, . . . ,µn) a serialisation of Ω

into a sequence of PatternSolution is defined as follows:

– serialise(Ω)⇒ serialise(µ1) , . . . ,serialise(µn)

– serialise(µ)⇒
<result>

{∀x ∈ dom(µ) ,serialise(µ,x)}
</result>

– serialise(µ,x)⇒
<binding name="x">

{term(µ(x))}
</binding>

,

http://www.w3.org/2007/SPARQL/result.xsd
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where term(µ(x)) is
– <uri>µ(x)</uri> if µ(x) ∈ U
– <bnode>µ(x)</bnode> if µ(x) ∈ B
– <literal>µ(x)</literal> if µ(x) ∈ L

Following the definition of the serialise function, in evalu-
ation rules, we will refer to sequences of elements of type
PatternSolution as Ω and to elements of type Result as µ .

Query Prolog Normalisation. As stated previously, XQuery
and SPARQL namespace declarations can be used inter-
changeably in the query prolog. Hence, we convert any
SPARQL syntax prefix declaration to XQuery namespace
declarations by the following normalisation rules:

Jprefix NCName: <URILiteral>KExpr

==

Jdeclare namespace NCName = URILiteral ;KExpr

(N2)

Jprefix : <URILiteral>KExpr

==

Jdeclare default namespace = URILiteral ;KExpr

(N3)

Jbase <URILiteral>KExpr

==

Jdeclare base-uri URILiteral ;KExpr

(N4)

XQuery for normalisation. In accordance to the SPARQL
semantics, blank nodes in ConstructTemplates need to be
distinctly instantiated for any solution mapping matching the
body, i.e., for every solution for the WhereClause a new blank
node identifier needs to be created in the resulting graph. To
ensure this behaviour in XSPARQL ConstructTemplates, we
will use position variables9 from XQuery in ForClauses to
generate these new blank node identifiers, i.e., we introduce
position variables in any XQuery for expressions without
position variables and also to make sure that XSPARQL
SparqlForClause expressions have position variables. To han-
dle the XQuery for expression, we change the normalisation
rule of for expressions to XQuery Core for expressions (cf.
Section 3.1):

u

wwwwww
v

for $VarName1 OptTypeDeclaration1
OptPositionalVar1 in Expr1,

· · · ,
$VarNamen OptTypeDeclarationn
OptPositionalVarn in Exprn
ReturnClause

}

������
~

Expr

==

for $VarName1 OptTypeDeclaration1
JOptPositionalVar1KPosVar in JExpr1KExpr
return
· · ·
for $VarNamen OptTypeDeclarationn
JOptPositionalVarnKPosVar in JExprnKExpr
JReturnClauseKExpr

(N5)

9 Position variables are variables that appear in an XQuery For-
Clauses after the optional at keyword – cf. Fig. 6a on page 5 – and bind
to an integer indicating the current position in the for-expression.

A new normalisation rule J·KPosVar takes care of introduc-
ing new positional variables where necessary. We assume
that the introduced position variables are distinct from any
of the variables in scope, represented by the formal seman-
tics variable $fs:new (cf. Draper et al 2010, Section 4.12.6):
JKPosVar == at $fs:new. In case a positional variable is already
present it is reused: Jat $PosVarKPosVar == at $PosVar.

We also assume a new static environment component
statEnv.posVars which consists of a sequence holding all po-
sitional variables in the given static environment, that is, the
variables defined in the at clause of enclosing for expres-
sions. The static type rules for the for expression (cf. Draper
et al 2010, Section 4.8.2) need to be extended accordingly
to store these positional variables, similar to the rules for
SparqlForClauses in Section 4.2 below.

XSPARQL BGP Matching. In this section we extend the
notion of Basic Graph Pattern (BGP) matching described
by Prud’hommeaux and Seaborne (eds.) (2008, Section 12.3),
in order to provide SPARQL with the variable bindings from
XQuery. For this we rely on the XQuery varValue dynamic
environment component, that maps variable names to their
value, and consider this environment component as defining
a set of bindings in the spirit of SPARQL solution mappings
(as presented in Definition 3). Along these lines, we will con-
sider the varValue component of the dynamic environment in
which a SPARQL graph pattern P is executed the basis for the
XSPARQL instance mapping of P. The transformation from
the dynEnv.varValue into the XSPARQL instance mapping
is defined next:

Definition 8 (XSPARQL instance mapping) Let C be an
expression context, and DC = dynEnv(C) .varValue be the
varValue and TC = statEnv(C) .varType be the varType com-
ponent of the static environment of C, respectively. The XSP-
ARQL instance mapping µC is a solution mapping where,
for each mapping vi → xi ∈ DC, xi is converted into an in-
stance of type RDFTerm or an RDF Collection according to
the following conditions:

– if xi = () and TC.varType(vi) = RDFTerm then µC(xi) is
undefined;

– if xi = () and TC.varType(vi) 6= RDFTerm then µC(xi) = ()

is an empty RDF Collection;
– if xi is a singleton sequence then µC(xi) = RDFTerm(xi);
– if xi = (e1, . . . ,en), n > 1, is a sequence then µC(xi) =

(RDFTerm(e1) · · ·RDFTerm(en)) to be read as an RDF
Collection (Manola and Miller 2004, Section 4.2) in Tur-
tle notation (see Beckett and Berners-Lee 2008, Section
3.5);

where RDFTerm(xi) is

– xi if TC.varType(vi) = RDFTerm,
– "xi" if TC.varType(vi) = xsd:string,
– "xi"ˆˆrdf:XMLLiteral if TC.varType(vi) = element(),
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– "data(xi)" if TC.varType(vi) = attribute(), and
– "xi"ˆˆTC.varType(vi), otherwise.

For a graph pattern P, we call the XSPARQL instance map-
ping of the expression context in which P is executed the
XSPARQL instance mapping of P.

Next we define the notion of XSPARQL BGP matching based
on the semantics of SPARQL BGP matching presented in
Section 3.2.

Definition 9 (Extended solution mapping) Let C be an ex-
pression context. An extended solution mapping of a graph
pattern P in C is a solution mapping compatible with the
XSPARQL instance mapping of C.

XSPARQL BGP matching is defined analogously to the
SPARQL BGP matching with the exception that we consider
only extended solution mappings:

Definition 10 (XSPARQL BGP matching) Let P be a ba-
sic graph pattern, C be the expression context of P, and G
be an RDF graph. We say that µ is a solution for P with
respect to active graph G, if there exists an extended solution
mapping µ ′ of C such that µ ′(P) is a subgraph of G and µ is
the restriction of µ ′ to the variables in vars(P).

This definition quasi injects the variable bindings inherited
from XQuery into SPARQL patterns occurring within XSP-
ARQL; by considering extended solution mappings the bind-
ings returned for a BGP P will not only match the input
graph G but also respect any bindings for variables in the
dynamic environment. We can extend the XSPARQL BGP
matching to generic graph patterns by following the SPARQL
evaluation semantics, as described by Prud’hommeaux and
Seaborne (eds.) (2008, Section 12.4). Considering a graph
pattern P and µC the XSPARQL instance mapping of P, we
similarly denote by evalxs(D,P,µC) the evaluation of P over
dataset D following XSPARQL BGP matching.

Matching blank nodes in nested queries. As for the hand-
ling of explicit DatasetClauses we briefly review the scop-
ing graph concept from SPARQL’s semantics, presented
in (Prud’hommeaux and Seaborne (eds.) 2008, Section 12).
Query solutions are taken from the scoping graph, a graph
that is equivalent to the active graph but does not share any
blank nodes with it or any graph pattern within the query.
Although in XSPARQL we are not considering blank nodes
in graph patterns, in the presence of nested SparqlForClauses
XSPARQL instance mappings may in fact contain assign-
ments of variables to blank nodes, injected from the outer
SparqlForClause into the inner SparqlForClause. For exam-
ple, in Fig. 10 on page 9, blank nodes bound in the outer
SparqlForClause to the variable $Person will be injected into
the inner SparqlForClause expression. In XSPARQL – as
opposed to SPARQL patterns – such injected bnodes will be
matched like constants against the blank nodes from the data,

to enable coreference within nested queries over the same
dataset. To ensure this behaviour, we introduce the notion of
active dataset; nested queries over the same active dataset
keep the same the scoping graphs. Any SparqlForClause
with an explicit DatasetClause causes the active dataset to
change, i.e., new scoping graphs (with fresh blank nodes)
for each graph within it are created; if no DatasetClause is
present in a nested SparqlForClause (implicit dataset), the
active dataset remains unchanged.

We introduce another auxiliary function in the XSPARQL
semantics, fs:dataset(DatasetClause), which returns an el-
ement of type RDFDataset based on the evaluation of its
argument. This conversion is performed according to the
SPARQL semantics presented in Section 3.2 and detailed
in (Prud’hommeaux and Seaborne (eds.) 2008). The static
type signature of this function is

fs:dataset($datasetClause as xs:string)
as RDFDataset

We allow the SourceSelector of a DatasetClause to be speci-
fied by an element of type uri or RDFGraph. Elements of the
type uri in the position of a graph will be mapped to graphs
where the uri is used as its name. XSPARQL – just like the
SPARQL specification – leaves the exact mapping of URIs
to graphs open to particular implementations, but for the rest
of this paper, we assume obtaining the RDF graph just by
dereferencing the URI via HTTP.

SparqlForClause and XQuery ForClauses. The semantics
of SparqlForClause (Rule [33a], Fig. 12a) is defined by the
following normalisation rules, static type analysis rules and
dynamic evaluation rules. We will also need to slightly adapt
the static analysis rules for regular ForClauses (in order to
properly deal with the extra position variables introduced by
rule (N5)). We start with normalisation rules for SparqlFor-
Clauses with implicit variable selection (by means of “for *”)
and with explicitly stated variables:

s
for * OptDatasetClause WhereClause
SolutionModifier return ExprSingle

{

Expr

==
u

v
for JWhereClauseKvars
OptDatasetClause WhereClause
SolutionModifier return ExprSingle

}

~

Expr

(N6)

The normalisation rule JWhereClauseKvars determines all stat-
ically unbound variables present in the WhereClause, i.e.,
returns a whitespace separated list of all variables in the
WhereClause that are not present in the statEnv.varType en-
vironment component. The next normalisation rule intro-
duces a new position variable, analogously to the before-
mentioned XQuery for normalisation rule, where J·KPosVar is
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as described above:
u

v
for $VarName1 . . .$VarNamen
OptDatasetClause WhereClause
SolutionModifier return ExprSingle

}

~

Expr

==

for $VarName1 . . .$VarNamen JKPosVar
OptDatasetClause WhereClause
Jreturn ExprSingleKExpr

(N7)

Static type analysis. The following static rule takes care
of defining the types of variables present in a for expres-
sion as RDFTerm, adds the introduced position variables to
statEnv.posVars, and determines the static type of the Sparql-
ForClause expression:

statEnv.posVars = (PosVar1, · · · ,PosVarn)

statEnv ` PosVarName of var expands to PosVar
statEnv + posVars(PosVar1, · · · ,PosVarn,PosVar)

+ varType

PosVar ⇒ xs:integer;
Var1⇒ RDFTerm;
· · · ;Varn⇒ RDFTerm


` ExprSingle : Type

statEnv `

for $Var1 · · ·$Varn at PosVarName
DatasetClause WhereClause
SolutionModifier
return ExprSingle : Type∗

(S2)

Please note that, since the variables included in a Sparql-
ForClause are not allowed to contain a namespace prefix,
we omitted the rules handling the namespace expansion for
the respective variables. The static type rule for a Sparql-
ForClause without an explicit DatasetClause is analogous.
Likewise, note that we need to slightly adapt the standard
static type checking rules for standard XQuery (Draper et al
2010, Section 4.8.2), in order to populate the XSPARQL spe-
cific new static environment component statEnv.posVars:10

statEnv.posVars = (PosVar1, · · · ,PosVarn)

statEnv ` Expr1 : Type1
statEnv ` VarName of var expands to Var

statEnv `VarNamepos of var expands to Varpos

statEnv + posVars(PosVar1, · · · ,PosVarn,Varpos)

+ varType
(

Var ⇒ prime(Type1);
Varpos⇒ xs:integer

)
` ExprSingle : Type

statEnv `
for $VarName at $VarNamepos
in Expr1 return ExprSingle :

Type ·quantifier(Type1)

(S3)

Dynamic Evaluation. For the dynamic evaluation we have
to introduce a new dynamic environment component called
activeDataset, that will be used to evaluate WhereClauses.
Initially, this component is empty (or set to a system default)
and is changed by a DatasetClause appearing in a SparqlFor-
Clause. We further introduce two auxiliary functions fs:value
and fs:sparql.

10 We show here only the adapted rule for ForClauses with position
variables without type declaration, the rule handling both position vari-
ables and type declarations is adapted analogously.

fs:value. The fs:value($PS,$var) function returns the value
of the specified SPARQL variable $var in a PatternSolution

specified by $PS. If $var is not bound in $PS, the empty
sequence is returned. This function is defined as

fs:value($ps as PatternSolution,
$variable as xs:string)

as RDFTerm?

fs:sparql. The fs:sparql function corresponds to the adapted
version of the eval function, the evalxs function, that evaluates
graph patterns implementing the extended notion of BGP
Matching (cf. Definition 10). The static type signature of this
function is defined as

fs:sparql($dataset as RDFDataset,
$SparqlWhere as xs:string,
$solutionModifiers as xs:string)

as PatternSolution*

The parameters of the evalxs function correspond to the
dataset $dataset, the SPARQL algebra expression generated
from the graph pattern $SparqlWhere and $solutionModifiers,
as described by Prud’hommeaux and Seaborne (eds.) (cf.
2008, Section 12.2.3), and the XSPARQL instance map-
ping µC that is derived from the expression context C over
which the fs:sparql function is evaluated. The result of evalxs
consists of a solution sequence which, as a result of apply-
ing the serialise function (cf. Definition 7), can be trans-
lated directly into an XQuery sequence of XML elements of
type PatternSolution.

We can now define the dynamic evaluation rules for the
SparqlForClause expression. Intuitively these rules state that
the return expression ExprSingle will be executed for each
PatternSolution that is returned from the evaluation of the
fs:sparql function. The following two dynamic rules specify
the evaluation of the SparqlForClause with an explicit Data-
setClause:

dynEnv ` fs:dataset(DatasetClause)⇒ Dataset

dynEnv ` fs:sparql
(

Dataset,WhereClause,
SolutionModifier

)
⇒ µ1, . . . ,µm

dynEnv + activeDataset(Dataset)

+ varValue


PosVar ⇒ 1;
Var1⇒ fs:value(µ1,Var1) ;
. . . ;
Varn⇒ fs:value(µ1,Varn)


` ExprSingle⇒ Value1

...
dynEnv + activeDataset(Dataset)

+ varValue


PosVar ⇒ n;
Var1⇒ fs:value(µm,Var1) ;
. . . ;
Varn⇒ fs:value(µm,Varn)


` ExprSingle⇒ Valuem

dynEnv `

for $Var1 · · ·$Varn at $PosVar
DatasetClause WhereClause
SolutionModifier return
ExprSingle⇒ Value1, . . . ,Valuem

(D1)
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This rule ensures that the activeDataset component of the
dynamic environment is updated to reflect the explicit Da-
tasetClause of the SparqlForClause. If the evaluation of the
fs:sparql function does not yield any solutions, i.e., evaluates
to an empty sequence, the overall result will also be the empty
sequence:

dynEnv.activeDataset⇒ Dataset

dynEnv ` fs:sparql
(

Dataset,WhereClause,
SolutionModifier

)
⇒ ()

dynEnv `
for $Var1 · · ·$Varn at $PosVar
DatasetClause WhereClause
SolutionModifier return ExprSingle

⇒ ()

(D2)

The rule that handles the SparqlForClause without an explicit
DatasetClause is presented next:

dynEnv.activeDataset⇒ Dataset

dynEnv ` fs:sparql
(

Dataset,WhereClause,
SolutionModifier

)
⇒ µ1, . . . ,µm

dynEnv + varValue


PosVar ⇒ 1;
Var1⇒ fs:value(µ1,Var1) ;
. . . ;
Varn⇒ fs:value(µ1,Varn)


` ExprSingle⇒ Value1

...

dynEnv + varValue


PosVar ⇒ n;
Var1⇒ fs:value(µm,Var1) ;
. . . ;
Varn⇒ fs:value(µm,Varn)


` ExprSingle⇒ Valuem

dynEnv `
for $Var1 · · ·$Varn at $PosVar
WhereClause SolutionModifier
return ExprSingle⇒ Value1, . . . ,Valuem

(D3)

Analogously to the SparqlForClause with an explicit dataset,
whenever the fs:sparql function evaluates to an empty se-
quence, the result will also be an empty sequence.

ConstructClause. We now define the semantics of the Con-
structClause (Rule [33b], Fig. 12a) by means of normalisa-
tion rules. SPARQL stand-alone construct queries (as de-
scribed in Section 4.1) are normalised into construct queries
with a surrounding ForClause:

u

v
construct ConstructTemplate′

DatasetClause WhereClause
SolutionModifier

}

~

Expr
==u

v
for ∗ DatasetClause
WhereClause SolutionModifier
construct ConstructTemplate′

}

~

Expr

(N8)

The resulting query will be further rewritten according to
normalisation rule (N6) above. As introduced in Section 4.1,
we allow nested XSPARQL expressions in subject, predicate
and object positions of ConstructTemplate’. These nested ex-
pressions are identified by the shortcuts {Expr}, <{Expr}>,
and _:{Expr}, that construct elements of type literal, uri
and bnode, respectively.

Similar to the normalisation rule for stand-alone Return-
Clauses presented in (Draper et al 2010, Section 4.8.1), the

following normalisation rule transforms construct clauses
into XQuery return ExprSingle s.

q
construct ConstructTemplate′

y
Expr

==
return fs:evalCT

(q
ConstructTemplate′

y
normCT

) (N9)

In the following we assume that ConstructTemplate’ is a
simple "." separated list of Subject, Predicate and Object.
The J·KnormCT rule transforms any Turtle shortcut notation
used in ConstructTemplate’ to these simple lists. As an ex-
ample of this rule, we present the rule for normalising Tur-
tle “;” abbreviations (cf. Beckett and Berners-Lee 2008, Sec-
tion 2.3):

JSubject Pred1 Obj1; . . . ;Predn ObjnKnormCT
==

Subject Pred1 Obj1 . . . Subject Predn Objn
(N10)

The normalisation rules for the other Turtle shortcuts that
are allowed in the SPARQL ConstructTemplate’ syntax are
similar to this one and are not presented here. Since anony-
mous blank nodes can be written in numerous ways in Turtle,
the J·KnormCT normalisation rule transforms each anonymous
blank node into a labelled blank node where the identifier/la-
bel is distinct from any other blank node labels present in the
ConstructTemplate’. Take, as an example, the ConstructTem-
plate in Fig. 8b on page 7. It is normalised as

{ _:b foaf:name {
fn:concat($N, " ", $F)
}.

}

fs:evalCT. The fs:evalCT function is a new built-in function
that ensures the created RDF graph is valid and rewrites any
blank nodes inside of ConstructTemplates to comply with
the SPARQL semantics (as described in Section 4.2). The
auxiliary fs:validTriple function checks if each triple is valid
according to the RDF semantics and is defined by rules (D5)
and (D6). The static type signatures of these functions are
defined as

fs:evalCT($template as RDFTerm*) as RDFGraph

fs:validTriple($subject as RDFTerm,
$predicate as RDFTerm,
$object as RDFTerm)

as RDFTriple

The fs:evalCT function, and hence construct expressions,
return elements of the previously defined type RDFGraph, thus
allowing the result of construct expressions to be used in
a DatasetClause of a subsequent SparqlForClause. In more
detail, the fs:evalCT function checks the constructed RDF
graph for validity according to the conditions described in
Definition 1, filtering out any non-valid RDF triples where
subjects are literals, predicates are literals or blank nodes,
etc. This is illustrated by the following dynamic evaluation
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rules.

dynEnv ` fs:validTriple(Subj1,Pred1,Obj1)⇒ Triple1

...
dynEnv ` fs:validTriple(Subjn,Predn,Objn)⇒ Triplen

dynEnv ` fs:evalCT

 Sub j1 Pred1 Ob j1
. . .

Sub jn Predn Ob jn


⇒<triples>Triple1 . . . Triplen</triples>

(D4)

The following dynamic evaluation rule for the fs:validTriple
function checks, relying on the fs:bnode function defined
below, if a triple is valid according to the RDF semantics.

dynEnv ` fs:bnode(Subject)⇒ ValS
statEnv ` ValS matches (uri | bnode)

dynEnv ` Predicate⇒ ValP
statEnv ` ValP matches uri

dynEnv ` fs:bnode(Object)⇒ ValO
dynEnv ` ValO matches (uri | bnode | literal)

dynEnv ` fs:validTriple

 Subject,
Predicate,
Object


⇒ element triple of type RDFTriple {

element subject of type RDFTerm {ValS}
element predicate of type RDFTerm {ValP}
element object of type RDFTerm {ValO}

}

(D5)

In case any of the subject, predicate or object do not match
an allowed type, the empty sequence is returned. Effectively
this suppresses any invalid RDF triples from the output graph.

dynEnv ` fs:bnode(Subject)⇒ ValueS
dynEnv ` Predicate⇒ ValueP

dynEnv ` fs:bnode(Object)⇒ ValueO

dynEnv ` not

ValueS matches (uri | bnode) and
ValueP matches uri and
ValueO matches

(
uri | bnode | literal

)


dynEnv ` fs:validTriple(Subject,Predicate,Object)⇒ ()

(D6)

Blank Node Skolemisation. In order to comply with the
SPARQL construct semantics, all blank nodes inside a Con-
structTemplate’ need to be skolemised, i.e., for each solu-
tion a new distinct blank node identifier needs to be gen-
erated. Since we normalise every XQuery for expression
and SparqlForClauses by assigning them position variables
(as described in Section 4.2), we just need to retrieve the
available position variables from the static environment com-
ponent statEnv.posVars, and create the new distinct identifier
based on the values of these variables. The fs:bnode function
takes care of skolemising blank nodes. If the argument of
this function is of type bnode a new blank node identifier is

generated using rule (D7):
dynEnv ` ValueR matches bnode

statEnv.posVars = (PosVar1, . . . ,PosVarn)

dynEnv.varValue(PosVar1) = PosValue1

...
dynEnv.varValue(PosVarn) = PosValuen

dynEnv ` fs:skolemConstant


ValueR,
PosValue1,
. . . ,
PosValuen

 ⇒ ValueRS

dynEnv ` fs:bnode(ValueR) ⇒
element bnode of type xs:string {ValueRS}

(D7)

Otherwise, fs:bnode returns its argument unchanged as rep-
resented by rule (D8):

dynEnv ` Value matches (uri | literal)
dynEnv ` fs:bnode(Value)⇒ Value (D8)

Both rules above use the fs:skolemConstant function for the
generation of the new identifiers based on the specified blank
node label and on positional variables in the dynamic envi-
ronment. An example of XSPARQL Semantics Evaluation is
included in Appendix A.

4.3 Correspondence between XSPARQL, XQuery, and
SPARQL

Since XSPARQL syntactically extends XQuery, and – by the
remarks in the end of Section 4.1 – also any SPARQL con-

struct query is syntactically valid in XSPARQL and these
queries are considered semantically equivalent to the seman-
tics in their base languages. The next propositions formally
establish this intuitive correspondence. The proofs for these
propositions and lemmas are included in Appendix C.1– C.3.

Proposition 1 XSPARQL is a conservative extension of XQ-
uery.

A similar correspondence holds for native SPARQL con-

struct queries. We show the equivalence between SPARQL
BGP Matching (Prud’hommeaux and Seaborne (eds.) 2008,
Section 12.3.1) and XSPARQL BGP Matching (presented in
Section 4.2) and prove the equivalence of XSPARQL seman-
tics for native SPARQL construct queries with those of the
SPARQL semantics.

Lemma 1 Given a graph pattern P, a dataset D and the XSP-
ARQL instance mapping µC of the expression context C over
which P is evaluated, and let Ω1 = evalxs(D,P,µC) and Ω2 =

eval(D,P) be solution mappings. If vars(P)∩dom(µC) = /0,
then Ω1 = Ω2 ./ {µC}.

We define, based on Prud’hommeaux and Seaborne (eds.)
(2008, Section 10.2), the semantics of the SPARQL con-

struct clause in order to show their equivalence to the XSP-
ARQL construct clause.
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Fig. 14 XSPARQL implementation architecture

Definition 11 (SPARQL construct semantics) Let C be a
ConstructTemplate and Ω a solution sequence. The SPARQL
construct returns an RDF graph generated by the set-union
of the triples obtained from substituting variables in C with
their bindings from Ω and satisfying the following condi-
tions:

1. any invalid RDF triples that may be produced by the
instantiation of the ConstructTemplate are ignored; and

2. blank node labels within the ConstructTemplate are con-
sidered scoped to the template for each solution, i.e., if
the same label occurs twice in a template, then there
will be one blank node created for each solution in Ω ,
but there will be different blank nodes for triples gen-
erated by different query solutions. Blank nodes in the
graph template be shared only within the same query
solution µi ∈Ω .

For SPARQL construct queries we can state the following:

Proposition 2 XSPARQL is a conservative extension of SP-
ARQL construct queries.

5 Implementation

In this section we present a prototype implementation of
the XSPARQL language. The prototype translates an XSP-
ARQL query into an XQuery query with interleaved calls to
a SPARQL engine. The architecture of our implementation
is shown in Fig. 14 and consists of three main components:
(1) a query rewriter, which turns an XSPARQL query into an
XQuery; (2) an XQuery engine for evaluating the XQuery;
and (3) a SPARQL engine, for querying RDF from within
the rewritten XQuery. Our current prototype is meant firstly
to demonstrate that XSPARQL can be implemented directly
on top of off-the-shelf components, providing convenient
means to model and execute XML2RDF/RDF2XML trans-
formations. Secondly, as illustrated in our evaluation section
(Section 6) we show that a clever implementation of the
XSPARQL language, again integrating an XQuery and a
SPARQL engine, but with several optimisations in place,
can improve efficiency significantly compared with a naive
implementation.

In general it is possible to use any XQuery and SPARQL
engines to evaluate XSPARQL queries. The current proto-
type implements the interface between the XQuery engine,
Saxon 9.3,11 and the SPARQL engine, ARQ 2.8.7,12 by using
the Saxon Extension API which allows calling Java meth-
ods from within XQuery queries. The main function, called
xsp:sparqlCall, evaluates a SPARQL query and returns its
result using the SPARQL XML results format (Beckett and
Broekstra 2008). By using Saxon’s extension mechanism
the two query engines are tighter integrated allowing a more
efficient communication than our former prototype (Akhtar
et al 2008) which used a SPARQL endpoint via HTTP to
evaluate SPARQL queries. To implement the blank node
handling as presented in Section 4.2 we changed the be-
haviour of ARQ accordingly by using its Java API. Instead
of implementing all newly introduced types as given in Sec-
tion 4.2 as custom types in XQuery, we reuse types as given
by the XML Schema of the SPARQL Query Results XML
Format,13 where the sr:binding type corresponds directly to
XSPARQL’s RDFTerm type. An RDFGraph, e.g., the result of a
ConstructClause, is serialised using Turtle syntax by build-
ing the output as xs:string. The remaining types RDFDataset
and RDFNamedGraph are adapted accordingly.

Next we present how SparqlForClauses and Construct-
Clauses are processed by using functions – called rewriting
functions – that operate on syntactic objects of XSPARQL
and returning an XQuery expression. In the resulting XQuery
expressions we assume the namespace prefix xsp: associated
with http://xsparql.deri.org/demo/xquery/xsparql.xquery. This pre-
fix is not allowed to be used in any XSPARQL query and
defines XQuery functions (presented below) that are avail-
able to the rewriting functions and used as the namespace
for any variables introduced by the rewriting, thus avoiding
clashes with variables from the XSPARQL query.

SparqlForClause. Firstly, our implementation defers SPARQL
queries in a SparqlForClause to the external SPARQL engine
and extracts the bindings for the SPARQL variables from
the SPARQL XML results document that is returned, by the
following rewriting function. Let XS and XQ denote the set
of all XSPARQL core and XQuery core expressions, respec-
tively. Any SparqlForClause is translated into an XQuery
query that calls the SPARQL engine with a select query
according to the rewriting function tr : XS→ XQ. Given an
XSPARQL expression Q of form

for Vars at $PosVar
DatasetClause
WhereClause
SolutionModifier
return ExprSingle

(Q1)

11 http://saxon.sourceforge.net/
12 http://jena.sourceforge.net/ARQ/
13 See http://www.w3.org/2007/SPARQL/result.xsd, for this paper we as-

sume this schema is associated with the namespace prefix sr.

http://xsparql.deri.org/demo/xquery/xsparql.xquery
http://saxon.sourceforge.net/
http://jena.sourceforge.net/ARQ/
http://www.w3.org/2007/SPARQL/result.xsd
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then tr(Q) is defined as the XQuery Core expression

tr(Q) =
(1) let $xsp:results :=

xsp:sparqlCall

 select Vars DatasetClause
WhereClause
SolutionModifier

 return

(2) for $xsp:result at $PosVar in $xsp:results//sr:result
return

(3) let $v := for each $v ∈ Vars
$xsp:result/sr:binding[@name= v]/∗ return

(4) ExprSingle

That is, we implement the fs:sparql formal semantics func-
tion by translating Q to a SPARQL select query, which is
then executed by the custom runtime function xsp:sparql-

Call that receives a SPARQL select query and returns the
result in SPARQL’s XML result format. The xsp:sparqlCall

function also takes care of XSPARQL’s BGP matching, as
described in Section 4.2, by replacing in the SPARQL query
any previously bound variables with their current value ac-
cording to the rules presented in Definition 8, thus mimicking
XSPARQL’s BGP matching behaviour while relying on an
off-the-shelf SPARQL engine. This replacement of variables
is performed by producing XQuery code that generates the
SPARQL select query string that is given as a parameter to
xsp:sparqlCall function using XQuery’s fn:concat func-
tion. We parse the query string for variables and, having
access to the list of previously declared variables it is pos-
sible to determine whether variables should be replaced by
their previously bound value or kept as a variable. Within
a SparqlForClause, whenever we encounter fresh variables,
i.e. that have not been declared before, we leave the variable
name as a string within the fn:concat (effectively postpon-
ing evaluation of the variable to the SPARQL engine). On the
other hand, if a variable has been declared before, the XQuery
variable name is inserted into the fn:concat function, mean-
ing that it is evaluated and replaced by its current value when
the fn:concat function is evaluated during the execution of
the rewritten query. Furthermore, the xsp:sparqlCall func-
tion implements the matching blank nodes in nested queries
feature (as described in Section 4.2): here, we rely on exter-
nal Java code to call the ARQ API in such a way that blank
node labels are preserved over consecutive SPARQL calls
that use the same dataset; during query rewriting we trigger
the correct matching of blank nodes in nested queries when-
ever we encounter a SparqlForClause without an explicit
DatasetClause) as follows: the respective custom Java code
is used to maintain a stack of the previous datasets. More
specifically, we collect the blank node identifiers for each
dataset created by an explicit DatasetClause in this stack;
when a SparqlForClause without explicit DatasetClause is
encountered, we take the first element of the stack as the im-
plicit dataset for the SparqlForClause along with its current
blank node identifiers.

ConstructClause. As for the construction of RDF graphs
(i.e., whenever the ReturnClause is a ConstructClause), our
implementation within XQuery simply produces a string in
Turtle syntax, where we need to ensure that each produced
RDF triple is syntactically valid. This is implemented by
means of a number of additional custom functions. Firstly,
the auxiliary function xsp:rdfTerm($VarName), presented in
Fig. 19a (Appendix B), returns the correctly formatted RDF
term corresponding to the variable’s value in Turtle syntax
given a variable of a SPARQL result type. This is done by
matching the type of the variable and adding the necessary
syntactic elements for each type. Next, the xsp:validTriple

presented in Fig. 19b (Appendix B) implements the seman-
tics function fs:validTriple by calling the xsp:rdfTerm func-
tion to correctly format triples to text (using the Turtle syn-
tax); xsp:validTriple further uses the auxiliary functions
xsp:validSubject, xsp:validPredicate and xsp:validObject

that respectively determine, according to the RDF seman-
tics, if their argument is a valid subject, predicate or ob-
ject. Also available to our implementation are the functions
xsp:isBlank, xsp:isURI and xsp:isLiteral which determine,
respectively, if a term is a blank node, URI or literal. Our
implementation of the fs:skolemConstant function consists
of appending all the position variables from the static con-
text (that are stored in the statEnv.posVars component) to
the respective blank node identifier using “_” as a separator,
represented here by the rewriting function

trsk($BNodeName,{$PosVar1, · · · ,$PosVarn}) =

fn:concat
(
" :",$BNodeName," ",$PosVar1, · · · ,
" ",$PosVarn

)
.

Finally, the function xsp:evalCT (without details) implements
fs:evalCT by simply concatenating all the triples generated
by the xsp:validTriple function to a string representation of
the RDF graph to be constructed in Turtle syntax.

The next lemma states that the results of the evaluation
of a Basic Graph Pattern P under XSPARQL BGP matching
semantics can be determined based on the results of evaluat-
ing µ(P) under SPARQL semantics. The proofs for the fol-
lowing proposition and lemma are included in Appendix C.4
and C.5.

Lemma 2 Let P be a BGP, D a dataset and µ the XSPARQL
instance mapping of P. Considering P′ = µ(P), we have that
evalxs(D,P,µ) = eval(D,P′) ./ {µ}.

The following result presents the equivalence of our imple-
mentation function tr and the XSPARQL semantics.14

Proposition 3 Let Q be a SparqlForClause of form (Q1) and
dynEnv the dynamic environment of Q, then dynEnv ` Q⇒
Val if and only if dynEnv ` tr(Q)⇒ Val.

14 Please note that, for presentation purposes, we are omitting the
initial empty line in case the proof trees require no premises.
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6 Towards Optimisations of Nested for Expressions

In this section we present different rewriting strategies for
XSPARQL queries containing nested expressions. We are
specifically interested in nested expressions with an inner
SparqlForClause, as the number of interleaved calls to the
SPARQL engine can be reduced drastically by using these
rewritings. As the cost inherent with XQuery for clauses is
much lower, we do not present different rewritings for nested
expressions where the inner expression is an XQuery for.
These different rewritings proposed in this section constitute
the initial step towards defining a set of optimisations for the
current implementation of the XSPARQL language.

We start by presenting the definitions and conditions
under which we can perform these rewritings.

Definition 12 (Dependent Join) We call two nested XSP-
ARQL for expressions (ForClause or SparqlForClause), where
the inner expression is a SparqlForClause and at least one
variable in the inner expression is bound by the outer expres-
sion, a dependent join. The shared variables between the for

expressions are called dependent variables.

Note that the strategies presented here are only applicable for
dependent joins satisfying the following restrictions:

1. An explicit DatasetClause of the inner query needs to be
statically determined i.e., it cannot be determined based
on variables bound from the outer expression;

2. The return clause of the inner expression can not be a
ConstructClause; and

3. The dependent variable in the inner query’s graph pattern
must be strictly bounded as defined next.

Definition 13 (Strict Boundedness) The set of strictly bound
variables in a graph pattern P, denoted bVars(P), is recur-
sively defined as follows: if P is

– a basic graph pattern, then bVars(P) = vars(P);
– (P1 P2), then bVars(P) = bVars(P1)∪bVars(P2);
– (P1 optional P2), then bVars(P) = bVars(P1);
– (P1 union P2), then bVars(P) = bVars(P1)∩bVars(P2);
– (graph i P1), then bVars(P) = bVars(P1)∪ ({i}∩V); and
– (P1 filter R), then bVars(P) = bVars(P1).

Informally, the dependent variables must occur (i) in a basic
graph pattern, (ii) in every alternative of unions pattern, and
(iii) it must also occur outside of the optional graph pattern in
case of optionals. Strict boundedness essentially ensures that
the join variable does not occur only in a filter expression,
which would lead to problems in case the inner expression is
called unconstrained, see below.

The rewritings introduced for the implementation of de-
pendent joins can be grouped into two categories, depending
whether the join is performed in XQuery or SPARQL. For
performing the join in XQuery, we use already known join al-
gorithms from relational databases, namely nested-loop joins

or sort-merge joins. For performing the join in SPARQL, if
the outer expression is a SparqlForClause we can implement
the join by rewriting both the inner and the outer expressions
into a single SPARQL call. In case the outer query consists
of an XQuery ForClause, we can still consider this approach,
but we need to convert the result of the outer XQuery For-
Clause to an RDF graph, for instance relying on a SPARQL
engine that supports SPARQL Update (Gearon et al 2011)
to add this temporary graph to a triple store. The proofs for
the propositions presented in this section are included in
Appendix C.6–C.8.

6.1 Dependent Join implementation in XQuery

The intuitive idea with these rewritings is, instead of using
the naïve rewriting that performs one SPARQL query for
each iteration of the outer expression, to execute only one
unconstrained SPARQL query, before the outer query. The
resulting set of SPARQL solution mappings is then joined in
XQuery with the results of the outer expression, using one of
the following strategies.

The straightforward way to implement the join over de-
pendent variables directly in XQuery is by nesting two XQuery
for expressions, much like a regular nested-loop join (Abite-
boul et al 1995) in standard relational databases. In our pro-
posed rewriting, the join consists of restricting the values
of variables from the inner expression to the values taken
from the current iteration of the outer expression, which does
not require an incremental solution construction step. The
approach for query rewriting applied to XSPARQL is similar
to already known optimisations from the relational databases
realm and also presented for XQuery queries by May et al
(2003).

Similarly to Section 5, we will describe the implemen-
tation of this nested-loop join by means of the rewriting
function optnl. We use A4B = (A∪B) \ (A∩B) to denote
the symmetric difference of two sets A and B.

Let Q be an XSPARQL expression of form

(1) for $Varout at $PosVarout in ExprSingle1 return

(2) for Varsin at $PosVarin

DatasetClause WhereClause SolutionModifier
(3) return ExprSingle2

(Q2)

the application of the rewriting function optnl(Q) can be split
into two cases

– if ExprSingle1 and ExprSingle2 do not contain any occur-
rences of (Q2) then, assuming Varssp =Vars(WhereClause),
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we have that:

optnl(Q) =

(1) let $xsp:results :=

xsp:sparqlCall


select {$Varout}∪Varsin

DatasetClause
WhereClause
SolutionModifier


return

(2) for $Varout at $PosVarout in ExprSingle1 return

(3) for $xsp:result at $PosVarin

in $xsp:results//sr:result return

(4) if

(
joinnl

(
{$Varout}∩Varssp,
$xsp:result

))
then

(5) let $v := for each $v ∈ {Varout}4Varssp

$xsp:result/sr:binding[@name= v]/∗ return
(6) ExprSingle2
(7) else ()

Note that here we slightly abuse notation, using ‘∪’ to de-
note the concatenation of two lists of variables. The auxil-
iary function joinnl aggregates the actual join-comparison
in an XPath expression, where two variables are consid-
ered compatible if the outer value is a blank node, their
values are equal or the inner value ($VarResi) is unbound:

joinnl({$Var1, · · · ,$Varn},$res) = xsp:isBlank($Var1) or
fn:empty($res/sr:binding[@name = Var1]/∗) or
($Var1 eq $res/sr:binding[@name = Var1]/∗)

 and

· · ·

and

 xsp:isBlank($Varn) or
fn:empty($res/sr:binding[@name = Varn]/∗) or
($Varn eq $res/sr:binding[@name = Varn]/∗)


– otherwise:

optnl(Q) =

optnl


for $Varout at $PosVarout in optnl(ExprSingle1) return

for Varsin at $PosVarin

DatasetClause WhereClause SolutionModifier
return optnl(ExprSingle2)


When Q is an XSPARQL expression of form

(1) for Varsout at $PosVarout DatasetClauseout

(2) WhereClauseout SolutionModi f ierout

(3) return

(4) for Varsin at $PosVarin DatasetClausein

(5) WhereClausein SolutionModi f ierin

(6) return ExprSingle

(Q3)

the application of the rewriting function optnl(Q) can be split
into two cases

– in case ExprSingle does not contain any occurrences
of (Q3) then, considering Varssp = vars

(
WhereClausein)

being the set of variables from the inner WhereClause,

we have that:

optnl(Q) =

(1) let $xsp:res in :=

xsp:sparqlCall


select
Varsin∪Varsout ∩Varssp

DatasetClausein

WhereClausein

SolutionModifierin


return

(2) let $xsp:res out :=

xsp:sparqlCall


select Varsout

DatasetClauseout

WhereClauseout

SolutionModifierout


return

(3) for $xsp:rout at $PosVarout

in $xsp:res out//sr:result return
(4) let $v := for each $v ∈ Varsout

$xsp:rout/sr:binding[@name= v]/∗ return
(5) for $xsp:rin at $PosVarout

in $xsp:res in//sr:result return

(6) if

joinsr

Varsout ∩Varssp,
$xsp:res out,
$xsp:res in

 then

(7) let $v := for each $v ∈Varsout4Varssp

$xsp:res in/sr:binding[@name= v]/∗ return
(8) ExprSingle
(9) else ()

where the joinsr function is defined as

joinsr({$Var1, · · · ,$Varn},$resOut,$resIn) =

joinnl({$resOut/sr:binding[@name = Var1]/∗},$resIn)
and · · · and
joinnl({$resOut/sr:binding[@name = Varn]/∗},$resIn) .

– otherwise:

optnl(Q) =

optnl


for Varsout at $PosVarout DatasetClauseout

WhereClauseout SolutionModi f ierout

return

for Varsin at $PosVarin DatasetClausein

WhereClausein SolutionModi f ierin

return optnl(ExprSingle)


This rewriting to the nested-loop join reduces the number of
needed SPARQL calls from 1+N (where N is the number
of iterations of the outer expression) to two SPARQL calls.

Next we show that the optnl rewriting function is sound
and complete.

Proposition 4 Let Q be a XSPARQL expression of form (Q2)
or (Q3) and dynEnv the dynamic environment of Q, then
dynEnv ` Q⇒ Val if and only if dynEnv ` optnl(Q)⇒ Val.

6.2 Dependent Join implementation in SPARQL

This form of rewriting of nested expressions aims at improv-
ing the runtime of the query by delegating the execution of
the join to the SPARQL engine, as opposed to performing
the join within XQuery only.
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SparqlForClause within a SparqlForClause. For nested
expressions where both expressions consist of SparqlFor-
Clauses we can implement the join by rewriting the Sparql-
ForClauses into a single SPARQL query. The idea here is
that a join encoded as nested SparqlForClauses in XSPARQL
can just be implemented by a SPARQL query that merges the
where clauses of the outer and inner SparqlForClause. How-
ever, there are some restrictions to the applicability of this
rewriting: (i) both queries must be done over the same dataset;
(ii) apart from order by, no other solution modifiers can be
used in the queries; and (iii) the original queries must not
require any nesting of the XML output or use of aggregators.

As indicated before, for the next rewriting we are only
allowing the order by solution modifier and the concate-
nation of “order by $o1” and “order by $o2” is “order by

$o1 $o2”. For presentation purposes, GGP and OC are, re-
spectively, a short representation for GroupGraphPattern and
OrderCondition. For an XSPARQL query Q of form

(1) for Varsout at $PosVarout DatasetClause
(2) where GGPout

(3) order by OCout

(4) return

(5) for Varsin at $PosVarin DatasetClause
(6) where GGPin

(7) order by OCin

(8) return ExprSingle

(Q4)

then
– in case ExprSingle does not contain any occurrences

of (Q4), we have that:

optsr(Q) =

(1) let $xsp:results :=

xsp:sparqlCall


select Varsout ∪Varsin

DatasetClause
where {GGPout . GGPin}
order by OCout OCin


return

(2) for $xsp:result at $PosVarout

in $xsp:results//sr:result return
(3) let $v := for each $v ∈ Vars

$xsp:result/sr:binding[@name= $v]/∗ return
(4) ExprSingle

Please note that the group graph patterns GGP1 and
GGP2 include the surrounding curly braces: { and }.

– otherwise:
optsr(Q) =

optsr



for Varsout at $PosVarout DatasetClause
where GGPout

order by OCout

return

for Varsin at $PosVarin DatasetClause
where GGPin

order by OCin

return optsr(ExprSingle)


Proposition 5 Let Q an XSPARQL expression of form (Q4)
and dynEnv the dynamic environment of Q, then dynEnv `
Q⇒ Val if and only if dynEnv ` optsr(Q)⇒ Val.

SparqlForClause within an XQuery for. In case the outer
expression is an XQuery for a similar strategy of deferring
the join to a single SPARQL query is still possible. Since the
optimisation proposed here does not preserve the ordering of
results, it can only be applied if the order of the outer XQuery
expression is not relevant. Cases where ordering can be disre-
garded in XQuery, as discussed by Grust et al (2007), include
not only the unordered ordering mode in XQuery but also the
use of aggregate functions and other built-in functions or the
quantifiers some and every. This optimisation relies on first
transforming the outer expressions’ XML results into RDF
and then joining this newly created RDF graph with the inner
SparqlForClause’s where pattern in a single SPARQL query.
To implement this, we can, for instance, rely on a triple store
with support for named graphs in order to temporarily store
the RDF data corresponding to the outer XQuery for expres-
sion’s bindings for dependent variables. We can then execute
a combined query with an adapted graph pattern, that joins
the pattern in the where clause of the inner SparqlForClause
with the bindings stored in the newly created named graph.
The optng rewriting function (presented below) starts by cre-
ating RDF triples representing the XML input which are then
collected into the variable $xsp:ds that corresponds to the
RDF graph to be inserted into the triple store. This opera-
tion is achieved by the XSPARQL functions xsp:createNG

that returns a URI for the newly inserted RDF named graph,
which is distinct from any other URIs for named graphs used
in the query, while finally the function xsp:deleteNG takes
care of deleting the temporary graph. Let Q be an XSPARQL
expression of form

(1) for $VarName OptTypeDeclaration
(2) OptPositionalVar in ExprSingle1
(3) return for Vars DatasetClause WhereClause
(4) SolutionModifier return ExprSingle2

(Q5)

then:
– in case ExprSingle1 and ExprSingle2 do not contain any

occurrences of (Q5), we have that:

optng(Q) =

(1) let $xsp:ds :=

xsp:createNG

 for $VarName OptTypeDeclaration
OptPositionalVar in ExprSingle1
return xsp:evalCT(NGP)


return

(2) let $xsp:results :=

xsp:sparqlCall


select Vars∪{$VarName}
DatasetClause ∪

{from named $xsp:ds}
WhereClause ∪

where{graph $xsp:ds NGP}
SolutionModifier


return

(3) for $xsp:result at $xsp:result pos

in $xsp:results//sr:result return
(4) let $v := for each $v ∈ Vars∪{$VarName}

$xsp:result/sr:binding[@name= $v]/∗
(5) return(ExprSingle2,xsp:deleteNG($xsp:ds))
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where NGP is the graph pattern {[] :value $VarName}.
– otherwise:

optng(Q) =

optng


for $VarName OptTypeDeclaration

OptPositionalVar in optng(ExprSingle1)
return for Vars DatasetClause WhereClause

SolutionModifier return optng(ExprSingle2)


Proposition 6 Let Q be an XSPARQL expression of form (Q5)
and dynEnv the dynamic environment of Q, then dynEnv `
Q⇒ Val if and only if dynEnv ` optng(Q)⇒ Val.

7 Experimental Evaluation

In this section we present an experimental evaluation of our
prototype presented in Section 5 using a novel benchmark
suite, called XMarkRDF, that is based on the well known
XMark benchmark suite for XQuery. We compare our XSP-
ARQL prototype with the SPARQL2XQuery engine, an im-
plementation of the direct translation of SPARQL to XQuery
presented by Groppe et al (2008) and test – where possible –
the effects of the optimisations presented in Section 6.

A detailed description of the XMarkRDF benchmark
suite is included in Appendix D. We denote the twenty origi-
nal XMark queries as q1–q20 and the variants of the nested
queries to which we apply our different rewritings as q′8–
q′11 and q′′8–q′′11. Further details regarding these queries are
included in Appendix D.

We would like point the reader to available benchmark
results for XQuery15 and SPARQL16 which present better
results than our XSPARQL implementation benchmarked
in this section. However, the comparison with such native
SPARQL and XQuery engines is beyond scope of the paper
since we specifically address a combined use case, where
components from both XQuery and SPARQL are needed.
The benchmark queries presented here cannot be comparably
solved by relying on a single SPARQL or XQuery engine.

7.1 Experimental Setup

Using the data generators and translators, provided by the
XMark benchmark and the XSPARQL translation to RDF
(as presented in Section 6), we created datasets with scaling
factors of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 and translated
them into XMarkRDF. An overview of the generated data
is presented in Table 4 on page 36, including dataset sizes

15 Benchmark results for the XMark dataset can be found at http:
//www.monetdb.org/XQuery/Benchmark/XMark/ and http://www.
informatik.uni-freiburg.de/~mschmidt/smp/xmark.html, retrieved 20-
04-2012.

16 Benchmark evaluation of RDF stores can be found
at http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
results/V6/index.html, retrieved 20-04-2012.

and, for each of the dataset size considered, the number of
persons and item categories modelled.

Furthermore, we converted the XMarkRDF datasets into
the RDF/XML format required by the SPARQL2XQuery
system. The resulting dataset sizes and translation times for
the different scaling factors of the XMarkRDF dataset are
presented in Table 5.

The benchmark system consists of a dual core AMD
Opteron 250 2.4GHz, 4GB memory running a 64 bit installa-
tion of Ubuntu 10.04.1 LTS. For the XQuery engine, we rely
on Saxon version 9.3 Enterprise Edition and Java version
1.6.0 64 bit. For evaluating SPARQL queries we used ARQ
2.8.7. We ran each query with a timeout of 10 minutes per
query, with the Java Heap size set to 1GB and the Saxon
configuration set as schema-unaware. The response time of
each query was measured using GNU time 1.7 and the pro-
cess startup time was deduced to each response time. For the
evaluation we defined the following run configurations:
XS using the XSPARQL implementation over the XMark-

RDF datasets (translated data and queries) without opti-
misation;

XSZ using the XSPARQL implementation over the XMark-
RDF datasets (translated data and queries) with nested
expression optimisation optZ for Z ∈ {nl,sr,ng};

S2XQ using the SPARQL2XQuery implementation over
the translation of the XMarkRDF datasets into the re-
quired XML format (XMarkRDFS2XQ) without optimisa-
tion; and

S2XQZ using the SPARQL2XQuery implementation over
the translation of the XMarkRDF datasets into the re-
quired XML format (XMarkRDFS2XQ) with nested ex-
pression optimisation optZ for Z ∈ {nl,sr}.

7.2 Results and Interpretation

The response times of the XS and S2XQ runs for the bench-
mark queries over the 2MB dataset size are shown in Table 1.
We present the 2MB dataset as it is the largest dataset our un-
optimised implementation can process within the time limit
of 10 minutes. Both the data and query translation times are
not measured in our benchmarks since this process can be
done a priori. The response times for the XMark queries
evaluated using the Saxon XQuery engine are not presented
in this table since these queries do not cater for our heteroge-
nous data sources scenario.

The comparison of the response times of the different
rewriting functions presented in Section 6 is shown graphi-
cally in Fig. 15 and 16. The response times of these queries
for the 2MB are presented in Table 2 as a reference, where
n/a indicates that the combination of query and optimisation
is not applicable.

We next present the interpretation of the benchmark re-
sults when comparing to the SPARQL2XQuery system and

http://www.monetdb.org/XQuery/Benchmark/XMark/
http://www.monetdb.org/XQuery/Benchmark/XMark/
http://www.informatik.uni-freiburg.de/~mschmidt/smp/xmark.html
http://www.informatik.uni-freiburg.de/~mschmidt/smp/xmark.html
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/index.html
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/V6/index.html
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Table 1 Query response times (in seconds) of the 2MB dataset. Query rewriting error (err).

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

XS 9.25 10.65 10.43 9.43 10.15 11.38 11.97 358.27 355.71 35.89
S2XQ 2.63 19.47 err 3.71 2.82 2.58 err 3.44 18.91 178.71

q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

XS 371.46 81.96 10.83 10.04 11.61 11.66 10.14 10.93 10.73 19.93
S2XQ 17.99 128.89 3.93 2.72 3.00 3.12 7.58 10.92 3.05 16.64

Table 2 Query response times in seconds of different optimisations for the 2MB XMarkRDF dataset. Optimisation not applicable (n/a).

XS S2XQ XSnl S2XQnl XSsr S2XQsr XSng

q8 358.27 3.44 15.66 3.54 n/a n/a n/a
q9 355.71 18.91 15.20 19.35 n/a n/a n/a
q10 35.89 178.71 19.78 156.09 n/a n/a n/a
q11 371.46 17.99 22.67 6.43 n/a n/a n/a

q′8 355.63 3.71 15.48 2.87 10.60 3.35 n/a
q′9 357.13 19.16 15.12 19.10 11.79 15.44 n/a
q′10 36.73 180.32 18.24 154.95 16.37 199.28 n/a
q′11 354.20 18.21 21.00 6.40 18.63 165.99 n/a

q′′8 352.10 4.46 13.29 3.61 n/a n/a 13.53
q′′9 356.63 18.64 13.23 16.46 n/a n/a 13.17
q′′10 37.84 175.70 16.88 175.47 n/a n/a 17.62
q′′11 365.24 139.96 21.27 145.05 n/a n/a 24.79

then proceed to then interpretation of the results from the
different rewriting strategies.

Evaluation of XS and S2XQ without optimisation. Ta-
ble 1 shows that for most of the queries the S2XQ runs are
faster than the interleaved calls to a SPARQL engine in the
XS runs. Even considering that the response times do not
include the data translation times (presented in Table 5), this
suggests that an alternative implementation of XSPARQL
where the SPARQL queries are translated into native XQuery
is a viable alternative to interleaving calls to a SPARQL en-
gine. However, for such translations to be possible we need
access to the full RDF dataset to perform the query trans-
lation which is not possible for example in the case where
we are querying data behind a SPARQL endpoint. Another
issue related to the implementation of the SPARQL2XQuery
system is that response times deteriorate considerably for
larger datasets. This was observed for all the queries in the
benchmark and can be seen in the graphs of Fig. 15 and 16.

Queries q8–q12 have the highest execution times of all
the benchmark queries since they contain nested expressions
(as can be seen in q9 presented in Fig. 20). For these nested
queries, our interleaved XSPARQL implementation can only
handle small datasets: the 2MB dataset is the largest for
which all queries finish within the time limit and for the
20MB dataset all queries result in a timeout. For these nested
queries we applied the different optimisations described in
Section 6 and next we present their benchmark evaluation.

Evaluation of XS and S2XQ with Nested Expression Op-
timisation. As we can see from Table 2 and Fig. 15 and 16,
the optnl optimisation provides significant reduction in the
query evaluation times. For queries q8, q9, and q11 the differ-
ence in response times is one order of magnitude.

The improvement in the execution time for query q10 is
less drastic. This can be explained by the fact that the outer ex-
pression of q10 iterates over “categories” which, as presented
in Table 4, increases at a much smaller rate than “persons”
do in the outer expressions of queries q8, q9, and q11.

However, for the S2XQ runs this optimisation provides
virtually no improvement in the query response times for
queries q8 and q9 and their variants. In queries q10, q11, q′10,
and q′11 we can observe an improvement in response times.
This can be attributed to the fact that the rewriting for queries
q10 and q11 and their variants are not as suitable for optimi-
sation by the XQuery engine when compared to queries q8
and q9. For these cases our rewriting strategy is capable of
performing the optimisation task for the XQuery engine.

For the XS run, it is possible to see in Fig. 15c and 15d
that optsr (presented in Section 6.2) is generally more effi-
cient in terms of response times than the XQuery based. This
can be justified by the the smaller amount of information that
is necessary to transfer from SPARQL to the XQuery engine.
This effectively reduces the overhead of using an external
SPARQL engine for the evaluation of queries. Considering
the S2XQsr run, optsr produces no improvement in the query
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Fig. 15 Query response times for (variants of) q8 and q9 on all XMarkRDF datasets

response times and in some cases (q′10 and q′11 from Table 2)
even deteriorates considerably the response times when com-
pared to S2XQ. This further supports our previous claims that
the XQuery engine is not capable of optimising the rewritten
code from complex SPARQL queries.

Furthermore the S2XQsr runs could not evaluate the higher
dataset sizes for query q8, whose response times deteriorate
considerably with the larger dataset sizes – as opposed to the
XSsr runs which behaves consistently similar to XSnl. This in-
dicates that S2XQ is not as efficient as the ARQ-based native
SPARQL engine runs XSsr and XSnl for larger datasets.

We can draw similar conclusions for the optng when com-
paring the query evaluation times of the optsr rewriting. How-
ever, the response times for this approach are deteriorated by
the the overhead of creating, inserting and deleting the RDF
Named Graph. This slowdown makes queries q′′8 , q′′10 and q′′11
of the of the optnl rewriting outperform this optimisation.

8 Related Work

With the establishment of XML and RDF, tools and methods
were introduced that rely on existing standards for retrieving
and querying both languages. Most of the existing proposals
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Fig. 16 Query response times for (variants of) q10 and q11 on all XMarkRDF datasets

to merge XML and RDF rely on translating the data from
different formats and/or translating the queries from different
languages. With this in mind, we divided the proposals in
two categories: (1) Translation of data: these tools aim at
integrating the heterogeneous data by translating between
different formats, usually relying on user predefined map-
pings. (2) Integration of query languages: this category of
approaches (where XSPARQL is also included) considers
the integration and/or expansion of query languages to allow
querying different formats. Next we give a short overview of
some of the tools and proposals available in each category.

Data translation. The TriX format (Carroll and Stickler
2004) consists of an alternative serialisation for RDF in XML,
with the aim of being compatible with standard XML tools. It
uses XSLT as an extensibility mechanism, allowing to spec-
ify syntactic extensions and defining macros. R3X17 uses an
RDF processor and XSLT to transform RDF data into a pre-
dictable form of RDF/XML also catering for RSS. Similarly,
Grit18 is designed to be a simplified normalisation for RDF,
easier to process with XSLT than RDF/XML. Gloze (Battle
2006) aims at directly interpreting an XML document as

17 http://wasab.dk/morten/blog/archives/2004/05/30/
transforming-rdfxml-with-xslt

18 http://code.google.com/p/oort/wiki/Grit

http://wasab.dk/morten/blog/archives/2004/05/30/transforming-rdfxml-with-xslt
http://wasab.dk/morten/blog/archives/2004/05/30/transforming-rdfxml-with-xslt
http://code.google.com/p/oort/wiki/Grit
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RDF data by providing transformations between XML and
RDF based on the XML Schema definition. The transforma-
tion tries to map each XML element and attribute to an RDF
property. The resulting transformation makes extensive use
of RDF sequences to maintain the ordering from the XML
structure. Droop et al (2008) translate the XML document
into RDF, annotating it with necessary information to answer
XPath queries. The XPath queries are, in turn, translated
into SPARQL queries and the result of the execution of the
SPARQL query is then translated into a format equivalent to
the result of the XPath query.

Deursen et al (2008) presents an approach for the trans-
formation between XML and RDF in a ontology dependent
manner. Introducing a language that allows to convert ex-
isting XML Schema documents (and XML documents con-
forming to the schemas) by defining mappings relating the
schema to specified ontologies. Other approaches (Bohring
and Auer 2005; Rodrigues et al 2008) aim at translating an
XML Schema into an equivalent OWL ontology. However, in
our approach, we are focusing on translation and integration
of instance data, rather than aiming at providing a semantic
interpretation for XML data.

The approaches that propose a batch translation of data
pose problems such as the replication of data and the need for
constant synchronisation between the original data and the
transformed data, for instance in the case of a frequently up-
dated database. We argue that this approach is not optimal for
most enterprise and Web scenarios and dynamic translations
are the best way to describe and implement such integration
of data.

Last, but not least, as we have also discussed XSPARQL
as a means to transform between different RDF represen-
tations beyond the capabilities of SPARQL (Polleres et al
2007) in this paper, we should mention the forthcoming
SPARQL 1.1 (Harris and Seaborne 2011) specification, that
will add features to SPARQL addressing such use cases (ag-
gregation, value generation, etc.). Whereas no detailed stud-
ies of SPARQL 1.1’s expressivity exist as of yet, we em-
phasise that XSPARQL – being a Turing-complete scripting
language for RDF – will be able to encompass all features
within SPARQL 1.1 and more.

Language integration. Berrueta et al (2008) present a fra-
mework that allows to perform SPARQL queries from XSLT:
XSLT+SPARQL. It relies on adding functions to XSLT that
provide the ability to query SPARQL endpoints and uses
standard XSLT to process the SPARQL XML results format.
Similarly to our current implementation, they rely on a clear
separation between the SPARQL query and XSLT parts of
the query.

The following proposals suggest compiling a SPARQL
query to XSLT/XQuery, Bikakis et al (2009) translate each
SPARQL query into an XQuery using a previously defined
mapping from OWL to XML Schema and Groppe et al (2008)

propose to embed SPARQL into XSLT or XQuery, presenting
extensions to these languages to enable SPARQL querying
where each SPARQL query is also translated into an equiva-
lent XQuery. This language is very close to the XSPARQL
language but it does, however, require converting the RDF
data to XML according to a predefined schema. Assuming
the queried dataset is available this translation caries over-
head into the query and in case the dataset is not available,
for example due to being stored behind a SPARQL endpoint,
such translation is not possible. Ding and Buxton presented
an approach to translate SPARQL into XQuery at the 2011
Semantic Technology Conference.19 This rewriting gener-
ates XQuery specifically tailored for the Marklogic Server
XML database engine. On a similar approach, integrating
XPath into SPARQL (Corby et al 2009), also promises to
bridge the gap between XML and RDF. This is approach
is similar to XSPARQL, although the choice here was to
extend the SPARQL query language. While also catering
for SQL queries, Fischer et al (2011) presents a translation
of SPARQL queries into XQuery and present encouraging
benchmark results. Another similar approach is presented
by May and Stuckenschmidt (2007), where the authors again
translate SPARQL to XQuery by relying on a normal form
of RDF/XML. Also according to our benchmarks, encoding
SPARQL in XQuery seems a viable option – assuming that
we have access to the RDF dataset beforehand – that would
allow to compile XSPARQL to pure XQuery without the use
of a separate SPARQL engine.

Zhou and Wu (2010) propose another approach to repre-
sent RDF data as XML trees, based on translating RDFS into
an XML Schema, and then translating SPARQL queries into
XPath and XQuery queries.

RDF Twig (Walsh 2003) suggests XSLT extension func-
tions that provide views on the sub-trees of an RDF graph.
The main idea of RDF Twig is that while RDF/XML is hard
to navigate using XPath, a subtree of an RDF graph can
be serialised into a more useful form of RDF/XML. RD-
FXSLT20 provides an XSLT preprocessing stylesheet and
a set of helper functions, similar to RDF Twig, yet imple-
mented in pure XSLT 2.0, readily available for multiple plat-
forms. The CORESE framework21 also provides extensions
of SPARQL to process XPath and XSL transformations in
SPARQL queries and defines an extension to the XSLT lan-
guage to allow to perform SPARQL queries.

Other approaches for querying heterogenous data were
presented by Berger et al (2006). This query language follows
a different syntax than the W3C standardised SPARQL and
XQuery and allows to write queries in the form of logical

19 http://semtech2011.semanticweb.com/sessionPop.cfm?confid=
62&proposalid=4015.

20 http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html
21 http://www-sop.inria.fr/edelweiss/software/corese/

http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=4015
http://semtech2011.semanticweb.com/sessionPop.cfm?confid=62&proposalid=4015
http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html
http://www-sop.inria.fr/edelweiss/software/corese/
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rules over an abstraction of the XML and RDF data models
(represented as a graph).

The nSPARQL query language (Pérez et al 2008) pro-
poses to extend SPARQL with navigational capabilities using
nested regular expressions. With this addition, the language
is sufficiently expressive to capture the semantics of RDFS.
In addition to this, it introduces a number of graph navigation
operators and adds the ability to selectively traverse the graph.
This work is different than our current proposed approach for
XSPARQL, but one of the possibilities for extending XSP-
ARQL is to enable to perform XQuery enriched SPARQL
queries.

Related to our nested queries optimisation, initial work
has been presented by Angles and Gutierrez (2010) over
an extension of SPARQL that caters for nested queries and
presented preliminary equivalences between types of nested
queries with the aim of determining if query unnesting can
be successfully applicable.

9 Conclusion and Future Work

In this paper we presented a novel query language, called
XSPARQL, that combines XQuery and SPARQL in order
to provide simplified transformations between the XML and
RDF data models. We covered the semantics of XSPARQL,
defined as an extension of the XQuery semantics and pre-
sented our current implementation which consists of rewrit-
ing each XSPARQL query to an XQuery query. The imple-
mentation is available for download at http://xsparql.deri.org/
where we also provide an online XSPARQL query evaluator
at http://xsparql.deri.org/demo/.

We also presented different rewriting strategies for a par-
ticular category of XSPARQL queries, namely those con-
taining nested expressions involving SPARQL queries and
presented benchmark evaluation of these different rewritings.
For these optimisations we detailed the rewriting functions
describing their application in our current implementation
of the XSPARQL language. We presented two types of op-
timisations for nested expressions: one based on reordering
the expressions in the XQuery rewriting to minimise the
number of calls to the SPARQL endpoint and another based
on performing a more complex SPARQL query that takes
care of joining the variables. The benchmarks carried out to
determine the impact of our optimisations have shown encour-
aging results, hinting on a large potential for optimisations
in XSPARQL. Among the rewriting strategies presented in
this paper and on our test data, pushing joins into a SPARQL
engine appeared the most promising strategy. Our benchmark
results showed that our optimisations are not only specific
to XSPARQL having also improved the response times of
the SPARQL2XQuery system to which we compared XSP-
ARQL.

Future Work. In this paper we have shown that nested
queries can be efficiently evaluated by applying particular
rewritings. Nonetheless all the tested rewriting strategies
were created ad-hoc. A declarative algebra model would help
to correctly and systematically study further optimisations for
XSPARQL. As starting points, Grust et al (2004) and Grust
et al (2010) have presented translations of XQuery to SQL,
whereas in our own earlier works we have likewise trans-
lated SPARQL essentially to Relational Algebra (Polleres
2007). These works seem to indicate valid starting points
for further research on equivalences and optimisations in
our language. Initial steps for defining such a declarative
algebra can also be based on subsets of the XQuery lan-
guage, for example XQuery core presented by Koch (2006).
A proposal towards the declarative model of XSPARQL
has been done by Bischof (2012). Although the initial set
of optimisations proposed in this paper show that our cur-
rent implementation of performing interleaved calls to a
SPARQL engine can be improved upon, a more tightly in-
tegrated implementation of the XSPARQL language should
yield better results. Such an integrated implementation is
planned for the near future where we can leverage optimi-
sations proposed for SPARQL (Hartig and Heese 2007) or
the proposed implementations of XQuery over relational
databases (Grust et al 2004; Beyer et al 2005). Finally, the
current XSPARQL language specification already allows
to query data contained in XML and RDF datastores. How-
ever, updating data of these datastores is still not directly
possible. We plan to extend the XSPARQL language to a full
data manipulation language allowing to update, insert, and
delete data contained in RDF tripestores. Here, similar to our
combination of query languages, we will aim at combining
common data manipulation languages for XML and RDF,
such as SPARQL Update (Gearon et al 2011) and XQuery
Update (Robie et al 2011).
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prefix vc: <...vcard-rdf/3.0#>
prefix foaf: <...foaf/0.1/>

_:b vc:Given "Charles" .
_:b vc:Family "Brown" .

(a) Example input

declare namespace vc="...vcard-rdf/3.0#";
declare namespace foaf="...foaf/0.1/";
for $P $N $F at $pos from <vc.rdf>
where { $P vc:Given $N. $P vc:Family $F.}
return fs:evalTemplate( _:gen foaf:name

{fn:concat($N," ",$F)}.)

(b) Query after normalisation

Fig. 17 Example input and normalised query of Fig. 8b

<RDFGraph>
<triples>

<triple>
<subject><bnode>_:gen_1</bnode></subject>
<predicate><uri>foaf:name</uri></predicate
<object><literal>Charles Brown</literal></object>

</triple>
</triples>

</RDFGraph>

Fig. 18 Query results

Table 3 Result of fs:sparql

$P $N $F

_:gen "Charles" "Brown"

A Example of XSPARQL Semantics Evaluation

As an example we show the application of the XSPARQL evaluation
semantics (presented in Section 4.2) to the sample query from Fig. 8b.
The example query features both, the new SparqlForClause as well as
the new ConstructClause. We assume the input graph vc.rdf as given
in Fig. 17a. Let us go through the three phases of XQuery semantics
evaluation, i.e. the normalisation, static type checking, and dynamic
evaluation steps.

Normalisation. In the normalisation step the SPARQL-style names-
pace declarations are rewritten to XQuery namespace declarations (see
Rule (N3)). After that, the whole construct query is rewritten to
a SparqlForClause by Rule (N8), the for * is expanded according
to Rule (N6) and the resulting SparqlForClause is then handled by
Rule (N7). Rule J·KPosVar then adds a new positional variable (e.g.,
$pos). Finally the construct is normalised by Rule (N9). The whole
normalisation phase results in the query given in Fig. 17b.

Static Type Analysis. By Rule (S2) the variables occurring in the
WhereClause, namely $P, $N, and $F, are typed as RDFTerm, and the
positional variable, $pos, is typed as xs:integer. The whole Sparql-
ForClause inherits its type from the contained return ExprSingle ,
which in turn inherits its type from the function fs:evalCT which is
RDFGraph.

Dynamic Evaluation. First the new environment component active-
Dataset is changed from empty to the one given in the DatasetClause,
i.e., the graph contained in vc.rdf. According to Rule (D3) the Where-
Clause is evaluated using the fs:sparql function with the active dataset,
as just initialised, the WhereClause as given in the query, and empty
SolutionModifiers. The fs:sparql function call results in a sequence of
PatternSolutions (in this case a singleton solution) as given in Ta-

declare function xsp:rdfTerm($VarName) {
typeswitch $VarName
case $e as literal
let $DT := data($e/@datatype)
let $L:= data($e/@xml:lang)
return concat("""", $e,

if($L) then concat("@", $L) else "",
if($DT) then concat("^^<", $DT,">") else "",

"""")
case $e as bnode return concat("_:", $e)
case $e as uri return concat("<", $e, ">")
default return "" };

(a) xsp:rdfTerm function

declare function xsp:validTriple($sub, $pred, $obj) {
if(xsp:validSubject($sub)

and xsp:validPredicate($pred)
and xsp:validObject($obj))

then concat(xsp:rdfTerm($sub), " ",
xsp:rdfTerm($pred), " ",
xsp:rdfTerm($obj), ".")

else "" };

(b) xsp:validTriple function

Fig. 19 Implementation functions

ble 3. Next, the same rule extracts the variable bindings for all variables,
by using the fs:value function, and assigns them to the correspond-
ing XQuery variables, typed as RDFTerm. After that the return expres-
sion ExprSingle is evaluated, using the just initialised variables. The
fs:evalCT function calls the fs:validTriple function passing it a blank
node generated by the fs:bnode function as subject, “foaf:name” as
predicate and the result of fn:concat as object. The fs:bnode function
(as given by Rule (D7)) generates a fresh blank node label for each ele-
ment of the PatternSolution. For this example we assume that the
function returns the new blank node label “_:gen_1”. The fs:validTriple
function tests these three values for validity. Since the subject is of type
bnode, the predicate is a QName (and therefore considered as being of
type uri), and the object is of type literal, namely an xs:string,
the function returns them as a valid RDFTriple. The fs:evalCT function
eventually returns the result of the single fs:validTriple function call,
thus the result of the whole query as an element of type RDFGraph as
shown in Fig. 18. Serialised to Turtle the query result, including QName
expansion, is the expression _:gen_1 <http://...foaf/0.1/name>
"Charles Brown".

B Implementation Functions Example

Fig. 19 presents some of the XQuery functions defined in the XSP-
ARQL language implementation, namely to correctly format RDF terms
(Fig. 19a) and to validate triples resulting from a construct expression
(Fig 19b).

C Proofs

C.1 Proof for Proposition 1

Proposition 1 XSPARQL is a conservative extension of XQuery.

Proof We show that the additional rules introduced in Section 4.2 do
not modify the semantics of any native XQuery. The XSPARQL se-
mantics – expressed in terms of normalisation rules, static typing rules
and dynamic evaluation rules – strictly extend the native semantics
of XQuery. In the semantics definition we also define new environ-
ment components, namely statEnv.posVars and dynEnv.activeDataset,
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which are not used in the XQuery semantics and thus do not inter-
fere with query evaluation. However, for the XSPARQL semantics we
also extend the normalisation rules and static analysis rules for native
XQuery for clauses. More specifically, rule (N5) extends the XQuery
for normalisation by adding a new variable to each position-variable
free for expression (i.e., that does not have an at clause). As stated
these new position variables are disjoint from the variables in scope, and
thus this rewriting does not interfere with the semantics of the original
query. The only rules which use the newly created position variables
are (i) the slightly modified static type analysis rule (S3) which extends
the XQuery for static analysis rule by collecting the position variables
in the static environment component statEnv.posVars, thus also main-
taining the original semantics of the original XQuery for rule, and
(ii) the dynamic evaluation rule (D7) which accesses statEnv.posVars
in order to generate Skolem-identifiers for blank nodes in construct
parts. However, rule (D7) only applies to XSPARQL queries which fall
outside the native XQuery fragment, whereas the semantics of native
XQuery queries remains untouched and independent of the extra envi-
ronment components in XSPARQL. ut

C.2 Proof for Lemma 1

Lemma 1 Given a graph pattern P, a dataset D and the XSPARQL
instance mapping µC of the expression context C over which P is eval-
uated, and let Ω1 = evalxs(D,P,µC) and Ω2 = eval(D,P) be solution
mappings. If vars(P)∩dom(µC) = /0, then Ω1 = Ω2 ./ {µC}.

Proof The XSPARQL BGP matching, evalxs(D,P,µC), extends SPARQL’s
BGP matching, eval(D,P), by defining that the solutions of the BGP
are the ones compatible with the XSPARQL instance mapping µC . Since
the evaluation of graph patterns (such as union, optional, graph
and filter) remains unchanged from the SPARQL semantics let
us focus on the evaluation of a BGP P. If there are no shared val-
ues between the graph pattern and the XSPARQL instance mapping,
vars(P)∩ dom(µC) = /0, then each solution µ ∈ Ω2 returned by the
SPARQL BGP evaluation semantics is trivially compatible with µC and
the result of the XSPARQL BGP matching is µ ∪ µC. Extending this
result to all solution mappings in Ω2, we obtain that Ω1 = Ω2 ./ {µC}.

ut

C.3 Proof for Proposition 2

Proposition 2 XSPARQL is a conservative extension of SPARQL con-
struct queries.

Proof For XSPARQL queries consisting of a SPARQL construct
query, there cannot exist any previous bindings for variables in XSP-
ARQL and thus the XSPARQL instance mapping µC over which the
construct query will be executed is empty. Let P represent the graph
pattern of the construct query and D the dataset, trivially there are
no shared variables between µC and P and so, following Lemma 1 the
bindings Ω1 for XSPARQL BGP matching are the same bindings Ω2
as SPARQL BGP matching, since Ω1 = Ω2∪{ /0} and hence Ω1 = Ω2.
Furthermore the formal semantics function fs:evalTemplate returns an
RDF graph satisfying all the conditions of Definition 11: 1. Ignoring
invalid RDF triples – Item 1 – is guaranteed by Rules D5 and D6; and
2. The generation of distinct blank nodes for each solution sequence –
Item 2 – is enforced by the blank node skolemisation rules (Rules (D7)
and (D8)). ut

C.4 Proof for Lemma 2

Lemma 2 Let P be a BGP, D a dataset and µ the XSPARQL instance
mapping of P. Considering P′ = µ(P), we have that evalxs(D,P,µ) =
eval(D,P′) ./ {µ}.

Proof Since, according to the variable substitution operation we have
that vars(P′)= vars(P)\dom(µ), we also have that vars(P′)∩dom(µ)=
/0 and it follows directly from Lemma 1 that evalxs(D,P,µ)= eval(D,P′) ./
{µ}. ut

C.5 Proof for Proposition 3

Proposition 3 Let Q be a SparqlForClause of form (Q1) and dynEnv
the dynamic environment of Q, then dynEnv ` Q⇒ Val if and only if
dynEnv ` tr(Q)⇒ Val.

Proof (⇐) Let us show that if dynEnv ` tr(Q)⇒ Val then dynEnv `
Q⇒ Val. The evaluation of Q consists of the application of Rule (D1)
as

dynEnv ` fs:dataset(DatasetClause)⇒ DS

dynEnv ` fs:sparql
(

DS,WhereClause,
SolutionModifier

)
⇒ µxs

i

dynEnvxs
1 ` ExprSingle⇒ Valuei . .

.

dynEnv `

for $Var1 · · ·$Varn at $PosVar
DatasetClause WhereClause
SolutionModifier return ExprSingle
⇒ Value1 · · ·Valuem

where, for each µxs
i ,

dynEnvxs
1 = dynEnv + activeDataset(DS)

+ varValue


PosVar ⇒ i;
Var1⇒ fs:value(µxs

i ,Var1) ;
· · · ;
Varn⇒ fs:value(µxs

i ,Varn)

 . (T1)

Let µC be the XSPARQL instance mapping of the expression context
that includes dynEnv and Ωtr the pattern solution resulting from evaluat-
ing the xsp:sparqlCall function, i.e., Ωtr = eval(DatasetClause,P),
where P is the rewriting of WhereClause according to µC. Further-
more, let µi ∈ Ωtr be the solution mapping from which Val is gen-
erated, i.e., there exists some dynamic environment dynEnvtr based
on dynEnv and extended with the variable bindings from µi such that
dynEnvtr ` ExprSingle⇒ Val.

Consider Ωxs = evalxs(DatasetClause,WhereClause,µC) as the so-
lution sequence resulting from the evaluation of the fs:sparql function.
As we know from Lemma 2, Ωxs = Ωtr ./ {µC} and thus there must ex-
ist a solution mapping µxs ∈Ωxs such that µxs = µi ./ µC . From (T1) we
infer that there exists a dynamic environment dynEnvxs that results from
extending dynEnv with the variable bindings from µxs and thus this
environment will also contain all the variable mappings from dynEnvtr .
Since we know that dynEnvtr ` ExprSingle⇒ Val, we also have that
dynEnvxs ` ExprSingle⇒ Val and thus dynEnv ` Q⇒ Val.

(⇒) Next we will show that if dynEnv ` Q ⇒ Val then dynEnv `
tr(Q)⇒ Val. We present the proof tree for each of the XQuery core ex-
pressions in the tr(Q) rewriting. The proof trees are presented for each
line of the tr(Q) rewriting and, in each proof tree, Expr corresponds to
the XQuery expressions of the following lines.

– let expression of line (1):
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dynEnv ` xsp:sparqlCall


select Vars
DatasetClause
WhereClause
SolutionModifier

⇒Ωtr

dynEnvtr
1 ` Expr⇒ Res

dynEnv `

let $xsp:results :=

xsp:sparqlCall


select Vars
DatasetClause
WhereClause
SolutionModifier


return Expr⇒ Res

where

dynEnvtr
1 = dynEnv + varValue(xsp:results⇒Ωtr) . (T2)

– for expression of line (2):

dynEnvtr
1 ` $xsp:results//sr:result⇒ µi

dynEnvtr
2 ` Expr⇒ Resi . .

.

dynEnvtr
1 `

for $xsp:result at $PosVar
in $xsp:results//sr:result
return Expr⇒ Res1, · · · ,Resn

where dynEnvtr
2 = dynEnvtr

1 + varValue
(
xsp:result⇒ µi;
PosVar ⇒ i

)
– let expressions of lines (3)-(4):

Here we consider all the let expressions represented by line (3),
where $v ∈ Vars:

dynEnvtr
2 ` $xsp:result/sr:binding[@name= v]/∗⇒V

dynEnvtr
3 ` ExprSingle⇒ Res

dynEnvtr
2 `

let $v :=
$xsp:result/sr:binding[@name= v]/∗

return ExprSingle⇒ Res

where dynEnvtr
3 = dynEnvtr

2 + varValue(v⇒V )

Consider the dynamic environment dynEnvxs
i such that dynEnvxs

i `
ExprSingle⇒ Val where, as we know from (T1), dynEnvxs

i extends
dynEnv by changing the activeDataset and varValue environment com-
ponents.

Consider µC, Ωxs, and Ωtr as before. From Lemma 2 we get that
Ωxs = Ωtr ./ {µC} and since µC is created based on dynEnv.varValue,
all the variable bindings from µC are already included in dynEnv. From
the proof trees of tr(Q) we can see that the for expression from line (2)
iterates over the all the solution mappings included in Ωtr and the
let expressions from lines (3) and (4) ensure there exists a dynEnvtr

2
such that dynEnvtr

2 .varValue contains all the variable bindings from
dynEnvxs

i .varValue, and we have that dynEnvtr
2 ` ExprSingle⇒ Val.

ut

C.6 Proof for Proposition 4

Proposition 4 Let Q be a XSPARQL expression of form (Q2) or (Q3)
and dynEnv the dynamic environment of Q, then dynEnv ` Q⇒ Val if
and only if dynEnv ` optnl(Q)⇒ Val.

Proof We now present the proof of the optnl rewriting function for
expressions of the form (Q3).

We start by showing the proof for the base case, where ExprSingle
of (Q3) does not contain any occurrences of (Q3).

Base Case. (⇒) We start by showing that if dynEnv ` Q ⇒ Val
then dynEnv ` optnl(Q)⇒ Val. Consider Ω out

xs and Ω in
xs the solution

sequences returned, respectively, by the evaluation of the outer and

inner SparqlForClauses of Q and the set of join variables J = Varsout ∩
vars

(
WhereClausein). Furthermore consider µout

xs ∈Ω out
xs and µ in

xs ∈Ω in
xs

the solution mappings that agree on the value of each join variable
j ∈ J from where Val is generated, i.e., there exists some dynamic en-
vironment dynEnvxs based on dynEnv and extended with the variable
mappings from µout

xs and µ in
xs such that dynEnvxs ` ExprSingle⇒ Val.

We show now the proof tree for each of the XQuery core expres-
sions in the optnl(Q) rewriting where, in each proof tree, Expr corre-
sponds to the XQuery expressions of the following lines.

– let expression of line (1), considering Vars = Varsin∪ (Varsout∩
vars

(
WhereClausein)), we have that

dynEnv ` xsp:sparqlCall


select Vars
DatasetClausein

WhereClausein

SolutionModifierin

 ⇒Ω in

dynEnvnl
1 ` Expr⇒ Res

dynEnv `

let $xsp:res in :=

xsp:sparqlCall


select Vars
DatasetClausein

WhereClausein

SolutionModifierin


return Expr⇒ Res

where

dynEnvnl
1 = dynEnv + varValue

(
xsp:res in⇒Ω in

)
. (T3)

The function optnl(Q) translates the SparqlForClause from lines (4)–
(6) of Q into the xsp:sparqlCall of line (1). The inner Sparql-
ForClause of Q is evaluated considering some dynamic environ-
ment dynEnvxs

i (and its expression context Ci). Since dynEnvxs
i is

an extension of dynEnv we have that dom(µC) ⊆ dom(µCi ). The
rewritten xsp:sparqlCall function is evaluated over the dynamic
environment dynEnv (included in expression context C). Consider
µC the XSPARQL instance mapping of C and µCi the XSPARQL
instance mapping of Ci.
Let Ω in

xs = evalxs
(
DatasetClausein,WhereClausein,µCi

)
be the so-

lution sequence resulting from the evaluation of the inner SparqlFor-
Clause of Q and the solution sequence resulting from evaluating the
xsp:sparqlCall function be Ω in

nl = eval
(
DatasetClausein,Pin

)
,

where Pin is the graph pattern obtained from replacing the vari-
ables in WhereClausein according to µC . As dom(µC)⊆ dom(µCi ),
i.e. µC contains less bindings for variables than µCi , the rewritten
graph pattern Pin contains more unbound variables and we get that
Ω in

xs �Ω in
nl .

– let expression of line (2):

dynEnvnl
1 ` xsp:sparqlCall


select Varsout

DatasetClauseout

WhereClauseout

SolutionModifierout


⇒Ω out

dynEnvnl
2 ` Expr⇒ Res

dynEnvnl
1 `

let $xsp:res out :=

xsp:sparqlCall


select Varsout

DatasetClauseout

WhereClauseout

SolutionModifierout


return Expr⇒ Res

where

dynEnvnl
2 = dynEnvnl

1 + varValue
(
xsp:res out⇒Ω

out) .

Regarding the SparqlForClause of lines (1)–(3) of Q (evaluated con-
sidering dynEnv), the optnl(Q) translates it into the xsp:sparqlCall
from line (2), which is evaluated over dynEnvnl

1 .
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Consider C1 the expression context where dynEnvnl
1 is included,

µC1 the XSPARQL instance mapping of C1 and Pout the graph
pattern obtained from replacing the variables in WhereClauseout ac-
cording to µC1 . From (T3) we can see that dom(µC1 ) = dom(µC)∪
{$xsp:res in} but $xsp:res in belongs to the $xsp: reserved
namespace so it will not be included in the variables of Where-
Clauseout and we can observe that we obtain the same graph pat-
tern Pout by replacing WhereClauseout according to µC . Let Ω out

xs =
evalxs(DatasetClauseout,WhereClauseout,µC) be the solution se-
quence resulting from evaluating the outer SparqlForClause accord-
ing to XSPARQL semantics and Ω out

nl = eval(DatasetClauseout,Pout)
be the pattern solution resulting from evaluating the rewritten
outer SparqlForClause according to SPARQL semantics. Following
Lemma 2, we have that Ω out

xs = Ω out
nl ./ {µC} and, as we have seen

from the proof of Proposition 3, since µC is already included in
dynEnv, we have that Ω out

xs = Ω out
nl .

– for expression of line (3):

dynEnvnl
2 ` $xsp:res out//sr:result⇒ µi

dynEnvnl
3 ` Expr⇒ Resi . .

.

dynEnvnl
2 `

for $xsp:rout at $PosVarout

in $xsp:res out//sr:result
return Expr⇒ Res1, · · · ,Resn

where

dynEnvnl
3 = dynEnvnl

2 + varValue
(
xsp:rout⇒ µi;
PosVarout⇒ i

)
.

– let expressions of line (4):
Here we consider all the let expressions represented by line (4),
where $v ∈ Varsout:

dynEnvnl
3 ` $xsp:rout/sr:binding[@name= v]/∗⇒ V

dynEnvnl
4 ` Expr⇒ Res

dynEnvnl
3 `

let $v :=
$xsp:rout/sr:binding[@name= v]/∗

return Expr⇒ Res

where

dynEnvnl
4 = dynEnvnl

3 + varValue(v⇒V ) .

– for expression of line (5):

dynEnvnl
4 ` $xsp:res in//sr:result⇒ Si

dynEnvnl
5 ` Expr⇒ Resi . .

.

dynEnvnl
4 `

for $xsp:rin at $PosVarout

in $xsp:res in//sr:result
return Expr⇒ Res1, · · · ,Resn

where

dynEnvnl
5 = dynEnvnl

4 + varValue
(
xsp:rin⇒ Si;
PosVarin⇒ i

)
.

– if expression of lines (6)-(9):

dynEnvnl
5 ` joinsr

(
Varsout ∩ vars(WhereClause) ,
$xsp:res out,$xsp:res in

)
⇒ true

dynEnvnl
5 ` ExprSingle⇒ Res1

dynEnvnl
5 `

if

(
joinsr

(
Varsout ∩ vars(WhereClause) ,
$xsp:res out,$xsp:res in

))
then ExprSingle else ()⇒ Res1

– let expressions of line (7) and (8):
Here we consider all the let expressions represented by line (7),
where $v ∈Varsout4vars

(
WhereClausein).

dynEnvnl
5 ` $xsp:res in/sr:binding[@name= v]/∗⇒ V

dynEnvnl
6 ` ExprSingle⇒ Res

dynEnvnl
5 `

let $v :=
$xsp:res in/sr:binding[@name= v]/∗

return ExprSingle⇒ Res
where

dynEnvnl
6 = dynEnvnl

5 + varValue(v⇒ V) .

Since we know that Ω out
nl = Ω out

xs and Ω in
xs �Ω in

nl , we obtain that µout
xs ∈

Ω out
nl and µ in

xs ∈ Ω in
nl . Since optnl(Q) performs a nested loop iteration

over Ω out
nl and Ω in

nl , the joinsr function will join the two solution map-
pings successfully since µout

xs and µ in
xs share the same values for the join

variables, and thus we have that dynEnv ` optnl(Q)⇒ Val.

(⇐) We now proceed by showing that if dynEnv ` optnl(Q)⇒ Val
then dynEnv ` Q ⇒ Val. Let Ω out

nl and Ω in
nl be the pattern solutions

returned by the outer and inner SparqlForClauses, respectively, and
let µout

nl ∈ Ω out
nl and µ in

nl ∈ Ω in
nl be the solution mappings, where Val

is deduced from, i.e., µout
nl and µ in

nl agree on their values for the join
variables. We also know that there must exist a dynamic environment
dynEnvnl, based on dynEnv and extended with the variable mappings
µout

nl and µ in
nl such that dynEnvnl ` ExprSingle⇒ Val.

Let us turn to the evaluation of dynEnv ` Q⇒ Val.
– SparqlForClause from lines (1)–(3), where Expr corresponds to the

SparqlForClause from lines (4)–(6) of Q. The evaluation of this
SparqlForClause consists of the application of Rule (D1):

dynEnv ` fs:dataset(DatasetClauseout)⇒ DSout

dynEnv ` fs:sparql
(

DSout, WhereClause,
SolutionModifier

)
⇒ µi

dynEnvxs
1 ` Expr⇒ Valuei . .

.

dynEnv `

for Varsout at $PosVarout

DatasetClauseout WhereClauseout

SolutionModifierout return
Expr⇒ Value1 · · ·Valuem

with Varsout = $Varout
1 · · ·$Varout

n , we have for each µi

dynEnvxs
1 =

dynEnv + activeDataset(DSout)

+ varValue


PosVarout⇒ i;
Varout

1 ⇒ fs:value(µi,Varout
1 ) ;

. . . ;
Varout

n ⇒ fs:value(µi,Varout
n )

 . (T4)

– SparqlForClause of lines (4)-(6):
The evaluation of dynEnvxs

1 ` Expr⇒ Valuei is given by

dynEnvxs
1 ` fs:dataset

(
DatasetClausein)⇒ DSin

dynEnvxs
1 ` fs:sparql

(
DSin,WhereClausein,
SolutionModi f ierin

)
⇒ µj

dynEnvxs
2 ` ExprSingle⇒ Valuej . .

.

dynEnvxs
1 `

for Varsin at $PosVarin

DatasetClausein WhereClausein

SolutionModi f ierin return
ExprSingle⇒ Value1 · · ·Valuem

where, considering Varsin = $Varin
1 . . .$Varin

n , we have for each µj

dynEnvxs
2 =

dynEnvxs
1 + activeDataset

(
DSin)

+ varValue


PosVarin⇒ j;
Varin

1 ⇒ fs:value
(

µj,Varin
1

)
;

· · · ;
Varin

n ⇒ fs:value
(

µj,Varin
n

)
 .
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As we know from the (⇒) direction of the proof, Ω out
nl =Ω out

xs and so we
have that µout

nl ∈Ω out
xs . Regarding the evaluation of the inner SparqlFor-

Clause we have that Ω in
xs �Ω in

nl . We consider two cases: (i) µ in
nl ∈Ω in

xs
or (ii) µ in

nl 6∈ Ω in
xs . In (i), we immediately get the desired result that

dynEnv ` Q⇒ Val. For (ii), consider µxs
C1

the XSPARQL instance of
the inner SparqlForClause (created based on dynEnvxs

1 ). As we can
see from (T4), dynEnvxs

1 (and thus also µxs
C1

) includes the bindings for
variables from each solution mapping µi ∈ Ω out

xs . Thus, according to
the XSPARQL BGP matching (cf. Definition 10), Ω in

xs will contain all
the solution mappings that are compatible with any solution mapping
µi ∈Ω out

xs and specifically those compatible with µout
nl . Since we know

that µ in
nl is compatible with µout

nl , we have that µ in
nl must belong to Ω in

xs ,
thus we can deduce that dynEnv ` Q⇒ Val.
Inductive Step. The proof follows from the recursive application of
the base case, over a new dynamic environment determined by the optnl
rewriting to dynEnvi ` optnl(ExprSingle).

The proof for nested queries with an XQuery for outer expres-
sion (Q2) is analogous where, in the preceding, the evaluation of the
SparqlForClause from lines (1)–(3) of (Q3) is replaced by the eval-
uation of an XQuery ForClause, as presented by Draper et al (2010,
Section 4.8.2). ut

C.7 Proof for Proposition 5

Proposition 5 Let Q an XSPARQL expression of form (Q4) and dynEnv
the dynamic environment of Q, then dynEnv ` Q⇒ Val if and only if
dynEnv ` optsr(Q)⇒ Val.

Proof We start by showing the proof for the base case, where Expr-
Single of (Q4) does not contain any occurrences of (Q4).
Base Case. (⇒) We start by showing that if dynEnv ` Q⇒ Val then
dynEnv ` optsr(Q) ⇒ Val. Consider Ω out

xs and Ω in
xs the solution se-

quences returned, respectively, by the evaluation of the outer and inner
SparqlForClauses of Q and J = Varsout ∩Vars

(
GGPin) the set of join

variables. Furthermore consider dynEnvexpr
i the dynamic environment

resulting from extending dynEnv with the variable mappings from the
compatible solution mappings µout

xs ∈ Ω out
xs and µ in

xs ∈ Ω in
xs such that

dynEnvexpr
i ` ExprSingle⇒ Val.

We now show the proof tree for each of the XQuery core expres-
sions in each line of the optsr rewriting where, for each line, Expr
represents the expressions of the following lines.

– let expression of line (1):

dynEnv ` xsp:sparqlCall


select Varsout ∪Varsin

DatasetClause
where GGPout GGPin

order by OCout OCin


⇒Ωsr

dynEnvsr
1 ` Expr⇒ Res

dynEnv `

let $xsp:results :=

xsp:sparqlCall


select Varsout ∪Varsin

DatasetClause
where GGPout GGPin

order by OCout OCin


return Expr⇒ Res

where

dynEnvsr
1 = dynEnv + varValue(xsp:results⇒Ωsr) .

According to the SPARQL semantics, the solution sequence that
results from evaluating the graph pattern GGPout GGPin, Ωsr =
Ω out

sr ./ Ω in
sr consists of all the solution mappings µout

sr ∈Ω out
sr and

µ in
sr ∈Ω in

sr such that µout
sr and µ in

sr are compatible. The following for
expression iterates over all these compatible solution mappings.

– for expression of line (2):

dynEnvsr
1 ` $xsp:results//sr:result⇒ µi

dynEnvsr
2 ` ExprSingle⇒ Resi . .

.

dynEnvsr
1 `

for $xsp:result at $PosVarout

in $xsp:results//sr:result
return ExprSingle⇒ Res1, · · · ,Resn

where dynEnvsr
2 = dynEnvsr

1 + varValue
(
xsp:result⇒ µi;
PosVarout⇒ i

)
– let expressions of lines (3)–(4).

Here we consider all the let expressions represented by line (3),
where $v ∈ Vars:

dynEnvsr
2 ` $xsp:result/sr:binding[@name= $v]/∗⇒ V

dynEnvsr
3 ` ExprSingle⇒ Res

dynEnvsr
2 `

let $v :=
$xsp:result/sr:binding[@name= v]/∗

return ExprSingle⇒ Res

where

dynEnvsr
3 = dynEnvsr

2 + varValue(v⇒ V) .

Note that we are only considering order by solution modifiers,
thus the number of results of each query is not changed. At most the
ordering of the results is changed but this does not interfere with this
proof and solution modifiers can be safely ignored in what follows.

Regarding the evaluation of the SparqlForClause from lines (1)–(4)
of Q (evaluated considering dynEnv), the optsr(Q) translates it into the
xsp:sparqlCall from line (1), which is also evaluated over dynEnv.
In this case, according to Lemma 2, we have that Ω out

sr = Ω out
xs and then

µout
xs ∈Ω out

sr .
Regarding the evaluation of the SparqlForClause from lines (5)–(8)

of Q (evaluated considering some dynamic environment dynEnvexpr),
the optsr(Q) rewriting incorporates it into the xsp:sparqlCall from
line (1), which is also evaluated over dynEnv. Considering that dynEnv
is less restrictive than dynEnvexpr , i.e., dynEnv contains less bindings for
variables than dynEnvexpr, and thus the evaluation of the inner Sparql-
ForClause over dynEnv will contain all the solution mappings from
Ω in

xs and specifically µ in
xs . As µout

xs and µ in
xs are compatible we have that

dynEnv ` optsr(Q)⇒ Val.

(⇐) Next we show that if dynEnv ` optsr(Q) ⇒ Val then dynEnv `
Q⇒ Val. Consider Ω out

sr and Ω in
sr as per the (⇒) direction of the proof

and the set of join variables J = Varsout ∩ vars
(
GGPin). As we have

seen Ωsr contains all the solution mappings µ = µout
sr ./ µ in

sr such that
µout

sr ∈ Ω out
sr and µ in

sr ∈ Ω in
sr and µout

sr and µ in
sr are compatible. Without

loss of generality consider µout
sr and µ in

sr the solution mappings where
Val is deduced from.

Let us turn to the evaluation of dynEnv ` Q⇒ Val.

– SparqlForClause from lines (1)–(4), where Expr corresponds to the
SparqlForClause from lines (5)–(8) of Q. Again, the evaluation of
this SparqlForClause consists of the application of Rule (D1):

dynEnv ` fs:dataset(DatasetClause)⇒ DS

dynEnv ` fs:sparql
(

DS, where GGPout

order by OCout

)
⇒ µi

dynEnvxs
1 ` Expr⇒ Valuei . .

.

dynEnv `

for Varsout at $PosVarout DatasetClause
where GGPout

order by OCout

return Expr⇒ Value1 · · ·Valuem
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where Varsout = $Varout
1 · · ·$Varout

n , we have for each µi

dynEnvxs
1 =

dynEnv + activeDataset(DS)

+ varValue


PosVarout⇒ i;
Varout

1 ⇒ fs:value(µi,Varout
1 ) ;

· · · ;
Varout

n ⇒ fs:value(µi,Varout
n )

 . (T5)

– SparqlForClause of lines (4)–(6):
The evaluation of dynEnvxs

i ` ExprSingleout ⇒ Valuei is shown
next:

dynEnvxs
1 ` fs:dataset(DatasetClause)⇒ DS

dynEnvxs
1 ` fs:sparql

DS,
where GGPin

order by OCin

⇒ µj

dynEnvxs
2 ` ExprSingle⇒ Valuej . .

.

dynEnvxs
1 `

for Varsin at $PosVarin DatasetClause
where GGPin

order by OCin

return ExprSingle ⇒ Value1 · · ·Valuem

where Varsin = $Varin
1 · · ·$Varin

n , we have for each µj

dynEnvxs
2 =

dynEnvxs
1 + activeDataset(DS)

+ varValue


PosVarin⇒ j;
Varin

1 ⇒ fs:value
(

µj,Varin
1

)
;

· · · ;
Varin

n ⇒ fs:value
(

µj,Varin
n

)
 .

As we have seen in the(⇒) direction, we have that Ω out
sr = Ω out

xs
and so we have that µout

sr ∈Ω out
xs .

Consider C the expression context where dynEnv is included and
µC the XSPARQL instance mapping of C. Further consider Pin the
graph pattern obtained from replacing the variables in GGPin accord-
ing to µC. Since vars

(
GGPin) ⊆ vars

(
Pin
)

all solutions mappings re-
turned by evaluating GGPin under XSPARQL semantics are included
in the solution sequence of evaluating Pin under SPARQL semantics
i.e., Ω in

xs �Ω in
sr . We obtain two cases: (i) µ in

sr ∈Ω in
xs or (ii) µ in

sr 6∈Ω in
xs . In

(i) we immediately get that dynEnv ` Q⇒ Val. For (ii), consider µxs
C1

the XSPARQL instance of the inner SparqlForClause (created based on
dynEnvxs

1 ). As we can see from (T5), dynEnvxs
1 (and thus also µxs

C1
) in-

cludes the bindings for variables from each solution mapping µi ∈Ω out
xs .

Thus, according to the XSPARQL BGP matching (cf. Definition 10),
Ω in

xs will contain all the solution mappings that are compatible with any
solution mapping µi ∈Ω out

xs and specifically those compatible with µout
sr .

Since we know that µ in
sr is compatible with µout

sr , we have that µ in
sr must

belong to Ω in
xs , thus we can deduce that dynEnv ` Q⇒ Val.

Inductive Step. The proof follows from the recursive application of
the base case, over a new dynamic environment determined by the optsr
rewriting to dynEnvi ` optsr(ExprSingle). ut

C.8 Proof for Proposition 6

Proposition 6 Let Q be an XSPARQL expression of form (Q5) and
dynEnv the dynamic environment of Q, then dynEnv ` Q⇒ Val if and
only if dynEnv ` optng(Q)⇒ Val.

Proof We start by showing the proof for the base case, where ExprSingle1
and ExprSingle2 of (Q5) do not contain any occurrences of (Q5).

Base Case. (⇒) Let us start by showing that if dynEnv `Q⇒ Val then
dynEnv` optng(Q)⇒Val. Consider Ω in

xs the solution sequence returned

by the evaluation of the inner SparqlForClauses of Q. Furthermore
consider dynEnvexpr

i such that dynEnvexpr
i ` ExprSingle2 ⇒ Val. The

dynamic environment dynEnvexpr
i results from extending dynEnv with

bindings for the outer variable $VarName and with the variable bindings
from a solution mapping µ in

xs ∈Ω in
xs where µ in

xs(VarName) = $VarName,
i.e. the value for the join variable in the solution mapping µ in

xs is the
same as assigned to $VarName.

We now show the proof tree for each of the XQuery core expres-
sions in the optng rewriting.

– let expression of line (1):
Considering NGP = {[] :value $VarName}, we have

dynEnv ` xsp:createNG


for $VarName
OptTypeDeclaration
OptPositionalVar
in ExprSingle1 return
xsp:evalTemplate(NGP)


⇒ DS

dynEnvng
1 ` ExprSingle2⇒ Res

dynEnv `

let $xsp:ds :=

xsp:createNG


for $VarName
OptTypeDeclaration
OptPositionalVar
in ExprSingle1 return
xsp:evalTemplate(NGP)


return ExprSingle⇒ Res

where

dynEnvng
1 = dynEnv + varValue(xsp:ds⇒ DS) . (T6)

– let expression of line (2):
Consider the dataset clause DatasetClauseng =DatasetClause ∪
{from named $xsp:ds} and the graph pattern WhereClauseng =
WhereClause ∪ where{graph $xsp:ds {[] :value $VarName}}.

dynEnvng
1 ` xsp:sparqlCall


select
Vars∪{$VarName}
DatasetClauseng

WhereClauseng

SolutionModifier

⇒Ω

dynEnvng
2 ` ExprSingle2⇒ Res

dynEnvng
1 `

let $xsp:results :=

xsp:sparqlCall


select
Vars∪{$VarName}
DatasetClauseng

WhereClauseng

SolutionModifier


return ExprSingle2⇒ Res

where

dynEnvng
2 = dynEnvng

1 + varValue(xsp:results⇒Ω ) .

The new merged dataset, DatasetClauseng, is created based on Da-
tasetClause and the newly created named graph NG. Since the URI
that identifies the newly created named graph NG is distinct from
any URI of named graphs present in DatasetClause, the triples
included in NG will never be a solution for WhereClause, and
will be matched only by the graph pattern where{graph $xsp:ds
{[] :value $VarName}}.
Consider C the expression context where dynEnv is included, µC
the XSPARQL instance mapping of C and Pout and Pin the graph
patterns obtained from, respectively, replacing the variables in
WhereClause and where{graph $xsp:ds { [] :value $VarName } }
according to µC .



Mapping between RDF and XML with XSPARQL 35

Furthermore, let Ω out
ng = eval(DatasetClauseng,Pout) and Ω in

ng =

eval
(
DatasetClauseng,Pin

)
. According to SPARQL semantics, the

pattern solution that results from evaluating WhereClause, Ωng =
Ω out

ng ./ Ω in
ng consists of all the solution mappings µout ∈Ω out

ng and
µin ∈Ω in

ng such that µout and µin are compatible.
– for expression of line (3):

dynEnvng
2 ` $xsp:results//sr:result⇒ µi

dynEnvng
3 ` ExprSingle2⇒ Resi . .

.

dynEnvng
2 `

for $xsp:result at $xsp:result pos

in $xsp:results//sr:result
return ExprSingle⇒ Res1, · · · ,Resn

where

dynEnvng
3 = dynEnvng

2 + varValue
(
xsp:result⇒ µi;
xsp:result pos⇒ i

)
.

– let expressions of lines (4)–(5):
Here we consider all the let expressions represented by line (4),
where $v ∈ Vars:

dynEnvng
3 ` $xsp:result/sr:binding[@name= $v]/∗⇒ V

dynEnvng
4 ` ExprSingle2⇒ Res

dynEnvng
3 `

let $v :=
$xsp:result/sr:binding[@name= $v]/∗

return ExprSingle⇒ Res
where

dynEnvng
4 = dynEnvng

3 + varValue(v⇒ V) .

Similarly to the proof of Proposition 5, we are only considering
order by solution modifiers, these only change the order of the solu-
tion sequences and thus can be safely ignored for this proof.

Regarding the evaluation of the XQuery for clause from lines (1)–
(2) of Q (evaluated considering dynEnv), the optng(Q) translates it into
the xsp:sparqlCall from line (2), which is evaluated considering
dynEnvng

1 . As we can see from (T6), dynEnvng
1 is based on dynEnv by

adding the binding for the xsp:ds variable. Since this variable belongs
to the xsp: reserved namespace, it is not allowed in the WhereClause
and so we have that the results of evaluating the xsp:sparqlCall
function over dynEnv or dynEnvng

1 will be the same.
Regarding the evaluation of the SparqlForClause from lines (3)–(4)

of Q (evaluated considering some dynamic environment dynEnvexpr),
the optng(Q) also incorporates it into the xsp:sparqlCall from line (2),
which is evaluated over dynEnvng

1 . Considering that dynEnvng
1 is less

restrictive than dynEnvexpr, i.e. dynEnvng
1 contains less bindings for

variables than dynEnvexpr , the evaluation of the inner SparqlForClause
over dynEnvng

1 will contain all the solution mappings from Ω in
xs and

specifically µin. As µout and µin are compatible we have that dynEnv `
ng(expr)⇒ Val.

(⇐) Next we will show that if dynEnv` optng(Q)⇒Val then dynEnv`
Q⇒ Val. Consider Ω out

ng and Ω in
ng the solution sequences returned by, re-

spectively, the evaluation of the new WhereClauseng and WhereClause.
As we have seen Ωng contains all the solution mappings µ = µout

ng ./ µ in
ng,

where µout
ng ∈ Ω out

ng and µ in
ng ∈ Ω in

ng, such that µout
ng and µ in

ng are compat-
ible. Again, consider µout

ng and µ in
ng the pattern solutions where Val is

deduced from.
Let us turn to the evaluation of dynEnv ` Q⇒ Val.

– XQuery for clause from lines (1)–(2):
Expr corresponds to the SparqlForClause from lines (3)–(4) of Q.

dynEnv ` ExprSingle1⇒ Vi

dynEnvxs
i ` ExprSingle1⇒ Valuei . .

.

dynEnv `
for $VarName OptTypeDeclaration

OptPositionalVar in ExprSingle1
return Expr⇒ Valuei . . .Valuen

we have for each Vi:

dynEnvxs
i = dynEnv + varValue(VarName⇒ Vi) . (T7)

– SparqlForClause of lines (2)–(4):

dynEnvxs
i ` fs:dataset(DatasetClause)⇒ DS

dynEnvxs
i ` fs:sparql

(
DS,WhereClause,
SolutionModifier

)
⇒ µj

dynEnvxs
j ` ExprSingle2⇒ Valuej . .

.

dynEnvxs
i `

for Vars at $PosVar DatasetClause
WhereClause SolutionModifier
return ExprSingle2 ⇒ Value1 · · ·Valuem

where, considering Vars = $Var1 . . .$Varn, we have for each µj:

dynEnvxs
j =

dynEnvxs
i + activeDataset(DS)

+ varValue


PosVar⇒ j;
Var1⇒ fs:value

(
µj,Var1

)
;

· · · ;
Varn⇒ fs:value

(
µj,Varn

)
 .

As we have seen in the (⇒) direction, we have that Ω out
ng = Ω out

xs
and so we have that µout

ng ∈Ω out
xs .

Consider C the expression context where dynEnv is included and
µC the XSPARQL instance mapping of C. Further consider Pin the
graph pattern obtained from replacing the variables in WhereClausein

according to µC . Since we know that vars
(
WhereClausein)⊆ vars

(
Pin
)
,

all solutions mappings returned by evaluating WhereClausein under
XSPARQL semantics are included in the pattern solution of evaluating
Pin under SPARQL semantics i.e., Ω in

xs � Ω in
ng. We obtain two cases:

(i) µ in
ng ∈Ω in

xs ; or (ii) µ in
ng 6∈Ω in

xs . In (i) we immediately get that dynEnv `
Q ⇒ Val. For (ii), consider µxs

C1
the XSPARQL instance of the inner

SparqlForClause (created based on dynEnvxs
1 ). As we can see from (T7),

dynEnvxs
1 (and thus also µxs

C1
) includes the bindings for variables from

each solution mapping µi ∈ Ω out
xs . Thus, according to the XSPARQL

BGP matching (cf. Definition 10), Ω in
xs will contain all the solution

mappings that are compatible with any solution mapping µi ∈ Ω out
xs

and specifically those compatible with µout
ng . Since we know that µ in

ng

is compatible with µout
ng , we have that µ in

ng must belong to Ω in
xs , thus we

can deduce that dynEnv ` Q⇒ Val.

Inductive Step. Let us assume that, for some arbitrary dynEnvi, dynEnvi `
ExprSingle1⇒Vali if and only if dynEnvi ` optng(ExprSingle1)⇒Vali.
According to the optng rewriting, there must exist a dynEnv j that is the
extension of dynEnvi with Vali and thus dynEnv j ` ExprSingle2⇒ Val
if and only if dynEnv j ` optng(ExprSingle2)⇒ Val. Consequently, we
have that dynEnv ` Q⇒ Val if and only if dynEnv ` optng(Q)⇒ Val.

ut

D The XMarkRDF Benchmark

For the evaluation of our implementation we created a benchmark suite
based on the XMark benchmark suite (Schmidt et al 2002). According
to Afanasiev and Marx (2008), the XMark suite is the most widely used
benchmark suite for XQuery. It provides a data generator that produces
XML data simulating an auction website (including information about
persons and items they bid for) and includes 20 XQuery queries, referred
to as q1 to q20 henceforth, over this generated data.

In order to benchmark the XSPARQL language we also require
data in RDF format, hence we provide transformations (in fact, using
XSPARQL queries) from XML datasets generated by XMark into RDF
triples. In this transformation we replicate all the data in the original
XMark datasets as RDF triples. We start by generating IRIs for each
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1 declare ordering unordered;
2 declare variable $xml external;
3

4 let $auction := doc($xml) return
5 let $ca := $auction/site/closed_auctions/closed_auction
6 return let $ei := $auction/site/regions/europe/item
7 for $p in $auction/site/people/person
8 let $a := for $t in $ca
9 where $p/@id = $t/buyer/@person return

10 let $n := for $t2 in $ei
11 where $t/itemref/@item = $t2/@id
12 return $t2
13 return <item>{$n/name/text()}</item>
14 return <person name="{$p/name/text()}">{$a}</person>

(a) Query q9 in XQuery (XMark)

1 prefix : <http://xsparql.deri.org/data/>
2 prefix foaf: <http://xmlns.com/foaf/0.1/>
3 declare variable $rdf external;
4

5 for $person $name from $rdf
6 where { $person foaf:name $name }
7 return <person name="{$name}">{
8 for * from $rdf where { $ca :buyer $person .
9 optional { $ca :itemRef $itemRef .

10 $itemRef :locatedIn [ :name "europe" ].
11 $itemRef :name $itemname } }
12 return <item>{$itemname}</item>
13 }</person>

(b) Query q9 in XSPARQL (XMarkRDF)

1 declare namespace ac="http://xsparql.deri.org/data/";
2 declare namespace foaf="http://xmlns.com/foaf/0.1/";
3 declare variable $rdf external;
4

5 for ($n, $m) in
6 SELECT $person $name FROM $rdf
7 WHERE { $person foaf:name $name . }
8 return
9 <person name="{$n}">{ for ($item) in

10 SELECT $itemname WHERE { $ca ac:buyer $person .
11 optional { $ca ac:itemRef $itemRef .
12 $itemRef ac:locatedIn [ ac:name "europe" ] .
13 $itemRef ac:name $itemname } .
14 } return <item>{$itemname}</item>
15 }</person>

(c) Query q9 in SPARQL2XQuery (XMarkRDFS2XQ)

Fig. 20 Variants of benchmark query q9

XML element that represents concepts like “persons,” “items,” “bids,”
etc. Inner XML element names are then converted into RDF predicates
and used to link the generated IRIs to the leaf element values which
are converted into RDF literals. Next, we converted the XMark queries
into corresponding XSPARQL queries using SparqlForClauses to ac-
cess the RDF data. We call this new benchmark suite the XMarkRDF
benchmark and is available for download at http://xsparql.deri.org/
data/XMarkRDF/.

From the initial set of 20 queries there are 5 queries (q8–q12) which
contain nested expressions. They are described informally in the XMark
suite as follows:

(q8) “List the names of persons and the number of items they bought;”
(q9) “List the names of persons and the names of the items they bought

in Europe;”
(q10) “List all persons according to their interest;”
(q11) “List the number of items currently on sale whose price does not

exceed 0.02% of the seller’s income;” and
(q12) “For each richer-than-average person, list the number of items

currently on sale whose price does not exceed 0.02% of the person’s
income.”

Fig. 20a and 20b present XMark query q9 and its translated XSP-
ARQL version in XMarkRDF, respectively. We have made two changes

<person name="Alagu Nyrup">
<item>monument </item>
<item>herring hush </item>

</person>

(a) Query q9 – bought items
grouped by person

<item name="monument ">Alagu Nyrup</item>
<item name="herring hush ">Alagu Nyrup</item>

(b) Query q′9 – flat list of items and buyer

Fig. 21 Example output excerpts of queries q9 and q′9

Table 4 Benchmark dataset description

Scaling factor Persons Categories XMark XMarkRDF
(MB) (MB)

0.01 255 10 1.1 1.2
0.02 510 20 2.3 2.3
0.05 1275 50 5.8 5.8
0.10 2550 100 11.7 12.4
0.20 5100 200 23.5 24.9
0.50 12750 500 58.0 61.7
1.00 25500 1000 116.5 124.8

to the XMark queries: (1) SPARQL queries do not guarantee any default
ordering, hence all original XMark queries were declared unordered –
as a consequence the XQuery engine is not required to follow document
order when executing the query; and (2) we added the external variables
$xml and $rdf in the XQuery and XSPARQL query, respectively, as
parameters used to specify the URL identifying the input benchmark
instance.

We included the SPARQL2XQuery system, which is similar in
spirit to XSPARQL, by Groppe et al (2008) in our system comparison.
While the language allows to perform similar queries to the XSPARQL
language, the implementation follows a different approach to integrate
the XML and RDF data. Rather than performing interleaved calls to a
SPARQL engine, the SPARQL2XQuery system relies on translating the
RDF data into a pre-defined XML format and transforming SPARQL
queries into equivalent XQuery over the pre-defined XML format. The
translated queries can be directly executed using a native XQuery engine.
For further comparison between XSPARQL and the SPARQL2XQuery
language, and other related works, we refer the reader to Section 8.

Query q9, as presented in Fig. 20c, is ready to be evaluated by
the SPARQL2XQuery system over the XMarkRDFS2XQ dataset. Please
note that this query follows the syntax presented in (Groppe et al 2008),
since we only had access to the implementation of the translation from
SPARQL to XQuery, while the evaluation was done using the asso-
ciated XQuery code. We focussed in our experimental evaluation on
query response time rather than on data transformation time, and as
SPARQL2XQuery requires an additional translation step from RDF to
a custom RDF/XML format, we converted the XMarkRDF RDF data
into the format required by the SPARQL2XQuery system. We denote
these new datasets, containing the RDF/XML format required for the
SPARQL2XQuery, by XMarkRDFS2XQ.

Optimising XMarkRDF Nested Queries

The different rewritings presented in Section 6 can be applied to the four
nested queries q8–q11. Query q12 also consists of a nested expression,
however the most accurate translation of this query into XSPARQL
results in the dependent variable not being strictly bound since it occurs

http://xsparql.deri.org/data/XMarkRDF/
http://xsparql.deri.org/data/XMarkRDF/
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Table 5 XMarkRDFS2XQ dataset and translation times

Scaling factor Dataset size Translation times
(MB) (seconds)

0.01 3.3 18.94
0.02 6.4 18.30
0.05 16.1 26.08
0.10 32.7 39.01
0.20 65.3 62.35
0.50 162.3 143.35
1.00 326.2 329.93

only in the filter of the inner query. As such, we cannot apply the
different rewritings to this query.

XMarkRDF query q9 is presented in Fig. 20 on the facing page.
This query is close to queries q8, q10, and q11 and consists of a nested
expression: the inner for expression of the query (lines 8–12) is exe-
cuted once for each person matched by the outer expression (lines 5–6),
which means that one SPARQL call will be made for each person sep-
arately. Thus, the number of SPARQL calls performed in the inner
expression directly depends on the size of the dataset (cf. Table 4 for
details). Queries q8, q9, and q11 evaluates the inner expression for each
person, while q10 evaluates the inner expression for each category. Each
dataset contains usually about 25 times more persons than categories.
The rewriting strategies presented in Section 6 reduce the number of
SPARQL calls to two: one to get all the people (similar to the direct
rewriting version), and one additional SPARQL call for retrieving all
the information about all the auctions in the dataset. Although the query
remains exponential, the practical evaluation will show that reducing the
number of SPARQL calls drastically improves query execution times.

As mentioned in Section 6.2, for the SPARQL based rewritings, we
want the query output to be computable directly in SPARQL without
any further processing, i.e., we do not want to use XQuery for further
processing of the SPARQL results and the query should be expressible in
SPARQL without features from SPARQL 1.1. Since the original nested
queries q8–q11 group the output results (while optionally applying some
aggregation function), we need to include modified versions of these
benchmark queries for the evaluation of the SPARQL based rewritings.
In these modified queries, denoted q′8–q′11, we changed the return format
of the queries to consist of a flattened representation of the output of
the original query. An example of the output for queries q9 and q′9 is
presented in Fig. 21. All queries q′i and q′′i follow a similar strategy for
reformatting the output: the queries resulting from applying optsr are
named q′8–q′11, while the queries that consist of an outer for expression
– to which optng was applied – are q′′8–q′′11.
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