
RDFS with Attribute Equations
via SPARQL Rewriting

Stefan Bischof and Axel Polleres
Vienna University of Technology
Siemens AG Österreich

Place de la Comédie, Montpellier

© http://grasstain.wordpress.com

population

area

avg. temp.
in May in °C

Place de la Comédie, Montpellier

© http://grasstain.wordpress.com

CO2
emissions
per person

population
density

avg.
temp.
in May

in F

population

area

avg. temp.
in May in °C

Use equations to infer missing numbers
What is the population density of Montpellier?

‣ Montpellier
population: 252 998
area: 56 880 000 m2

population density: ??? in people/km2

‣ Can we infer population density from given data?
computations not supported by Semantic Web reasoners

‣ How can we get area in km2?
unit conversion by computation

3

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

4

SPARQL
query

RDF
data

Results

Triple store

?

What is the population density of Montpellier?
written in SPARQL

5

SELECT ?dens
WHERE { :Montpellier :populationDensity ?dens .}

SELECT ?city ?dens
WHERE {
 :Montpellier :populationDensity ?mdens .
 ?city rdf:type :City ;
 :populationDensity ?dens .
 FILTER(?dens > ?mdens)
}

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

6

SPARQL
query

RDFS
ontology

RDF
data

Results

Triple store

?

We need RDFS for integrating different sources

‣ Unify RDFS properties of different data sources

‣ Use uni"ed name for population

‣ Use already implemented RDFS reasoners
which allow SPARQL queries

7

dbp:populationTotal rdfs:subpropertyOf :population
geo:population rdfs:subpropertyOf :population

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

8

SPARQL
query

RDFS
ontology

RDF
data

Results

Triple store

+ equations ?

Syntax RDFS and equations
converting between RDFS and DLRDFSE

A1 v A2 A1 rdfs :subClassOf A2

9P v A P rdfs :domain A

9P� v A P rdfs : range A

9U v A U rdfs :domain A

P1 v P2 P1 rdfs :subPropertyOf P2

U1 v U2 U1 rdfs :subPropertyOf U2

U0 = f(U1, . . . , Un) U0 definedByEquation“f(U1, . . . ,Un)
00

A(x) x rdf : type A

R(x, y) x R y

U(x, q) x U ”q” ˆ̂ owl : rational

9

Syntax RDFS and equations
converting between RDFS and DLRDFSE

A1 v A2 A1 rdfs :subClassOf A2

9P v A P rdfs :domain A

9P� v A P rdfs : range A

9U v A U rdfs :domain A

P1 v P2 P1 rdfs :subPropertyOf P2

U1 v U2 U1 rdfs :subPropertyOf U2

U0 = f(U1, . . . , Un) U0 definedByEquation“f(U1, . . . ,Un)
00

A(x) x rdf : type A

R(x, y) x R y

U(x, q) x U ”q” ˆ̂ owl : rational

9

 dbp:population rdfs:domain dbp:populatedPlace.

Syntax RDFS and equations
converting between RDFS and DLRDFSE

A1 v A2 A1 rdfs :subClassOf A2

9P v A P rdfs :domain A

9P� v A P rdfs : range A

9U v A U rdfs :domain A

P1 v P2 P1 rdfs :subPropertyOf P2

U1 v U2 U1 rdfs :subPropertyOf U2

U0 = f(U1, . . . , Un) U0 definedByEquation“f(U1, . . . ,Un)
00

A(x) x rdf : type A

R(x, y) x R y

U(x, q) x U ”q” ˆ̂ owl : rational

9

 dbp:population rdfs:domain dbp:populatedPlace.

geonames:population rdfs:subPropertyOf dbp:population .

Syntax RDFS and equations
converting between RDFS and DLRDFSE

A1 v A2 A1 rdfs :subClassOf A2

9P v A P rdfs :domain A

9P� v A P rdfs : range A

9U v A U rdfs :domain A

P1 v P2 P1 rdfs :subPropertyOf P2

U1 v U2 U1 rdfs :subPropertyOf U2

U0 = f(U1, . . . , Un) U0 definedByEquation“f(U1, . . . ,Un)
00

A(x) x rdf : type A

R(x, y) x R y

U(x, q) x U ”q” ˆ̂ owl : rational

9

 dbp:population rdfs:domain dbp:populatedPlace.

geonames:population rdfs:subPropertyOf dbp:population .

:Montpellier dbp:population 252998 .

Syntax RDFS and equations
converting between RDFS and DLRDFSE

A1 v A2 A1 rdfs :subClassOf A2

9P v A P rdfs :domain A

9P� v A P rdfs : range A

9U v A U rdfs :domain A

P1 v P2 P1 rdfs :subPropertyOf P2

U1 v U2 U1 rdfs :subPropertyOf U2

U0 = f(U1, . . . , Un) U0 definedByEquation“f(U1, . . . ,Un)
00

A(x) x rdf : type A

R(x, y) x R y

U(x, q) x U ”q” ˆ̂ owl : rational

9

 dbp:population rdfs:domain dbp:populatedPlace.

geonames:population rdfs:subPropertyOf dbp:population .

dbp:populationDensity :definedByEquation
“dbp:population / dbp:area” .

:Montpellier dbp:population 252998 .

Extend the DLRDFS Semantics by equations

‣ RDFS + attributes: usual DL model theoretic semantics

‣ For an equation, infer a new value
if all other attributes of the equation are given and
there is no division by zero
then the computation result is the new attribute value

‣ satis"ed in

‣ Query answers are not necessarily "nite
ABoxes inconsistent with equations

10

U0 = f(U1, . . . , Un)

if 8x, y1, . . . , yn(
n̂

i=1

(x, yi) 2 U

I
i) ^ defined(f(U1/y1, . . . , Un/yn)

) (x, eval(f(U1/y1, . . . , Un/yn)) 2 U

I
0

I

Extend the DLRDFS Semantics by equations

‣ RDFS + attributes: usual DL model theoretic semantics

‣ For an equation, infer a new value
if all other attributes of the equation are given and
there is no division by zero
then the computation result is the new attribute value

‣ satis"ed in

‣ Query answers are not necessarily "nite
ABoxes inconsistent with equations

10

U0 = f(U1, . . . , Un)

if 8x, y1, . . . , yn(
n̂

i=1

(x, yi) 2 U

I
i) ^ defined(f(U1/y1, . . . , Un/yn)

) (x, eval(f(U1/y1, . . . , Un/yn)) 2 U

I
0

I

dbp:populationDensity :definedByEquation
“dbp:population / dbp:area” .

Extend the DLRDFS Semantics by equations

‣ RDFS + attributes: usual DL model theoretic semantics

‣ For an equation, infer a new value
if all other attributes of the equation are given and
there is no division by zero
then the computation result is the new attribute value

‣ satis"ed in

‣ Query answers are not necessarily "nite
ABoxes inconsistent with equations

10

U0 = f(U1, . . . , Un)

if 8x, y1, . . . , yn(
n̂

i=1

(x, yi) 2 U

I
i) ^ defined(f(U1/y1, . . . , Un/yn)

) (x, eval(f(U1/y1, . . . , Un/yn)) 2 U

I
0

I

dbp:populationDensity :definedByEquation
“dbp:population / dbp:area” .

:Montpellier dbp:population 252998 .
:Montpellier dbp:area 56.88 .

Extend the DLRDFS Semantics by equations

‣ RDFS + attributes: usual DL model theoretic semantics

‣ For an equation, infer a new value
if all other attributes of the equation are given and
there is no division by zero
then the computation result is the new attribute value

‣ satis"ed in

‣ Query answers are not necessarily "nite
ABoxes inconsistent with equations

10

U0 = f(U1, . . . , Un)

if 8x, y1, . . . , yn(
n̂

i=1

(x, yi) 2 U

I
i) ^ defined(f(U1/y1, . . . , Un/yn)

) (x, eval(f(U1/y1, . . . , Un/yn)) 2 U

I
0

I

dbp:populationDensity :definedByEquation
“dbp:population / dbp:area” .

:Montpellier dbp:population 252998 .
:Montpellier dbp:area 56.88 .

:Montpellier dbp:populationDensity 4447.93 .

Formulate equations as rules
n rules for equations in n variables

‣ Equation given for population density

‣ Formulate equation as rule

‣ More rules needed to cover all directions

11

areakm2 (X,A) (popDensity(X,PD), population(X,P), A = P ÷ PD .

areakm2 =
population

popDensity

popDensity(X,PD) (population(X,P), areakm2 (X,A),PD = P ÷A.

population(X,P) (areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .

‣ DBpedia: population 252 998, area 56.88 km2

‣ Apply rule: population density 4447.925...293

‣ Apply rules: population 252 997.999...999 and area 56.880...003

‣ Rules engine computes population density again: 4447.925...275

Forward chaining often does not terminate
because of rounding errors

12

popDensity(X,PD) (population(X,P), areakm2 (X,A),PD = P ÷A.

areakm2 (X,A) (population(X,P), popDensity(X,PD), A = P ÷ PD .

population(X,P) (areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .

Naive backward chaining does not terminate
unfolding of recursive rules blows up arbitrarily

‣ To compute the population density query for population density
makes no sense

13

areakm2 (X,A) (popDensity(X,PD), population(X,P), A = P ÷ PD .

popDensity(X,PD) (population(X,P), areakm2 (X,A),PD = P ÷A.

population(X,P) (areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .

Naive backward chaining does not terminate
unfolding of recursive rules blows up arbitrarily

‣ To compute the population density query for population density
makes no sense

13

areakm2 (X,A) (popDensity(X,PD), population(X,P), A = P ÷ PD .

popDensity(X,PD) (population(X,P), areakm2 (X,A),PD = P ÷A.

population(X,P) (areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .

Naive backward chaining does not terminate
unfolding of recursive rules blows up arbitrarily

‣ To compute the population density query for population density
makes no sense

13

areakm2 (X,A) (popDensity(X,PD), population(X,P), A = P ÷ PD .

popDensity(X,PD) (population(X,P), areakm2 (X,A),PD = P ÷A.

population(X,P) (areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .

Rules are problematic for applying equations
break the in!nite series of rule applications

‣ Need to specify all directions of the equation
not as intuitive and short as equations

‣ Forward chaining often does not terminate
division or multiplication is often enough for non-termination
implementation dependent

‣ Backward chaining does not terminate
unfolding of recursive rules can blow up arbitrarily
even for a single equation no termination

‣ We have to break the in"nite series of rule applications

14

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

15

SPARQL
query

RDFS
ontology

RDF
data

Results

Triple store

PerfectRef
rewriter

UCQ

+ equations

?

?

Query answering in DL-Lite: PerfectRef
Encode TBox in the query [Calvanese et al., 2009]

conj. query q

TBox T

ABox A

PerfectRef
Query q’

Query
evaluation

Answer query q over ontology (T,A)

certain answers

16

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

17

SPARQL
query

RDFS
ontology

RDF
data

Results

Triple store

PerfectRef
rewriter

UCQ

+ equations + equations

?

?

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensity

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensity

areakm2 population

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensity

areakm2 population

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

areakm2 population

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

areakm2 population

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity areakm2

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity areakm2

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity areakm2

popDensity

areakm2 population

areamile2aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity popDensityareakm2

popDensity

areakm2 population

areamile2aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity popDensityareakm2 areakm2

popDensity

areakm2 population

areamile2aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590

Extend the DL-Lite PerfectRef algorithm
by equations and adorned attributes

19

8 Stefan Bischof and Axel Polleres

Note that here we slightly abused notation using ans(qP , K) synonymous for what
would be more precisely “the set of SPARQL variable mappings corresponding to
ans(qP , K)”. As for the semantics of more complex patterns, we refer the reader to
[16, 19] for details, except for the semantics of BIND which is newly introduced in
SPARQL 1.1 [10], which we define as:

JP BIND (Expr AS v)KG = {µ fi {v æ eval(µ(Expr))} | µ œ JP KG}

Here, by eval(µ(Expr)) we denote the actual value in Q from evaluating the arithmetic
expression Expr after applying the substitutions from µ.

3.1 Adapting PerfectRef to DLE
RDFS

Next, we extend the PerfectRef algorithm [3] which reformulates a conjunctive query
to directly encode needed TBox assertions in the query. The algorithm PerfectRefE
in Algorithm 1 extends the original PerfectRef by equation axioms and conjunctive

Algorithm 1: Rewriting algorithm PerfectRefE
Input: Conjunctive query q, TBox T
Output: Union (set) of conjunctive queries

1 P := {q}
2 repeat
3 P

Õ
:= P

4 foreach q œ P

Õ do
5 foreach g in q do // expansion
6 foreach inclusion axiom I in T do
7 if I is applicable to g then
8 P := P fi

)
q[g/ gr(g, I)]

*

9 foreach equation axiom E in T do
10 if g = U

adn(g)
(x, y) is an (adorned) attribute atom, U œ vars(E) and

vars(E) fl adn(g) = ÿ then
11 P := P fi

)
q[g/ expand(g, E)]

*

12 until P

Õ
= P

13 return P

Table 2. Semantics of gr(g, I) of Algorithm 1

g I gr(g/I)

A(x) B ı A B(x)

÷P ı A P (x, _)

÷P

≠ ı A P (_, x)

÷U ı A U(x, _)

P1(x, y) P2 ı P1 P2(x, y)

U

adn(g)
1 (x, y) U2 ı U1 U

adn(g)
2 (x, y)

Preliminary version – May 24, 2013

‣ Equations

‣ Original query

‣ Step 1: Expand popDens by E1

‣ Step 2: Expand area by E2

PerfectRef with adorned attributes
query rewriting

20

popDens(montpellier,X)

E1: popDens =
population

areakm2
E2: aream2 = areakm2⇥ 1 000 000

population

{popDens}(montpellier, P),

aream2{popDens,area}(montpellier, A1), A = A1 ⇤ 1000000, X = P/A

population

{popDens}(montpellier, P),

areakm2{popDens}(montpellier, A), X = P/A

‣ Equations

‣ Original query

‣ Step 1: Expand popDens by E1

‣ Step 2: Expand area by E2

PerfectRef with adorned attributes
query rewriting

20

popDens(montpellier,X)

E1: popDens =
population

areakm2
E2: aream2 = areakm2⇥ 1 000 000

population

{popDens}(montpellier, P),

aream2{popDens,area}(montpellier, A1), A = A1 ⇤ 1000000, X = P/A

population

{popDens}(montpellier, P),

areakm2{popDens}(montpellier, A), X = P/A

‣ Equations

‣ Original query

‣ Step 1: Expand popDens by E1

‣ Step 2: Expand area by E2

PerfectRef with adorned attributes
query rewriting

20

popDens(montpellier,X)

E1: popDens =
population

areakm2
E2: aream2 = areakm2⇥ 1 000 000

population

{popDens}(montpellier, P),

aream2{popDens,area}(montpellier, A1), A = A1 ⇤ 1000000, X = P/A

population

{popDens}(montpellier, P),

areakm2{popDens}(montpellier, A), X = P/A

PerfectRefE is sound but incomplete in general
conditions for completeness

‣ ABox is data-coherent with the TBox
model of each object has at most one value per attribute
attribute inclusions must also be considered

‣ For data-coherent ABoxes wrt. the TBox and
rewritten SPARQL queries (free of non-distinguished variables)
PerfectRefE is sound and complete

21

PerfectRefE is sound but incomplete in general
conditions for completeness

‣ ABox is data-coherent with the TBox
model of each object has at most one value per attribute
attribute inclusions must also be considered

‣ For data-coherent ABoxes wrt. the TBox and
rewritten SPARQL queries (free of non-distinguished variables)
PerfectRefE is sound and complete

21

:M dbp:area_km2 1 .
:M dbp:area_mi2 2.590 .

PerfectRefE is sound but incomplete in general
conditions for completeness

‣ ABox is data-coherent with the TBox
model of each object has at most one value per attribute
attribute inclusions must also be considered

‣ For data-coherent ABoxes wrt. the TBox and
rewritten SPARQL queries (free of non-distinguished variables)
PerfectRefE is sound and complete

21

:M dbp:area_km2 1 .
:M dbp:area_mi2 2.590 .

:M dbp:area_km2 1 .
:M dbp:area_mi2 2.6 .

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

22

SPARQL
query

RDFS
ontology

RDF
data

Results

Triple store

SPARQL
transformator

PerfectRef
rewriter

UCQ

+ equations + equations

+ equations

?+ equations

Rewrite SPARQL queries by PerfectRef

‣ SPARQL basic graph patterns (BGPs)
the fundamental building block for graph pattern matching

‣ BGPs can be expressed by conjunctive queries [Perez et al., 2009]
 no variables as predicates :Montpellier ?prop “Montpellier”
no variables for classes :Montpellier rdf:type ?class

‣ Convert BGPs to CQs, rewrite CQs to UCQs, convert UCQs to SPARQL

‣ SPARQL translator
rewrite each BGP independently by PerfectRefE

‣ Variable assignments are rewritten to SPARQL 1.1 BIND

23

‣ CQ 1:

‣ CQ 2:

‣ CQ 3:

SELECT ?X WHERE {
 { :Montpellier dbo:populationDensity ?X . }
 UNION
 { :Montpellier dbo:populationTotal ?p ; dbp:areaTotalKm ?a .
 BIND (?p/?a as ?X) }
 UNION
 { :Montpellier dbo:populationTotal ?p ; dbo:area ?a2 .
 BIND (?a2/1000000 as ?a) BIND (?p/?a as ?X) }
}

Rewrite SPARQL query by PerfectRef
rewritten SPARQL query

24

popDens(montpellier,X)

population

{popDens}(montpellier, P),

area

{popDens}(montpellier, A), X = P/A

population

{popDens}(montpellier, P), A = A1 ⇤ 1000000,
aream2{popDens,area}(montpellier, A1), X = P/A

‣ CQ 1:

‣ CQ 2:

‣ CQ 3:

SELECT ?X WHERE {
 { :Montpellier dbo:populationDensity ?X . }
 UNION
 { :Montpellier dbo:populationTotal ?p ; dbp:areaTotalKm ?a .
 BIND (?p/?a as ?X) }
 UNION
 { :Montpellier dbo:populationTotal ?p ; dbo:area ?a2 .
 BIND (?a2/1000000 as ?a) BIND (?p/?a as ?X) }
}

Rewrite SPARQL query by PerfectRef
rewritten SPARQL query

24

popDens(montpellier,X)

population

{popDens}(montpellier, P),

area

{popDens}(montpellier, A), X = P/A

population

{popDens}(montpellier, P), A = A1 ⇤ 1000000,
aream2{popDens,area}(montpellier, A1), X = P/A

RDFS with Attribute Equations via SPARQL Rewriting
the big picture

25

SPARQL
query

RDFS
ontology

RDF
data

Results

Triple store

SPARQL
transformator

PerfectRef
rewriter

UCQ
SPARQL
engine

+ equations + equations

+ equations

+ equations

How does the rewriting algorithm perform on
real world data?

‣ Collected data about cities
from several sources (e.g., DBpedia, Eurostat)
254 081 triples for 3161 city contexts
inconsistent and consistent dataset

‣ 6 equations, 2 subProperties and 1 subClass axioms

‣ 4 different queries

‣ 3 implementations
Jena forward rules with ARQ
Jena forward rules with ARQ with noValue
Rewriting with ARQ

26

How does the rewriting algorithm perform on
real world data?

‣ Collected data about cities
from several sources (e.g., DBpedia, Eurostat)
254 081 triples for 3161 city contexts
inconsistent and consistent dataset

‣ 6 equations, 2 subProperties and 1 subClass axioms

‣ 4 different queries

‣ 3 implementations
Jena forward rules with ARQ
Jena forward rules with ARQ with noValue
Rewriting with ARQ

26

(?city :area ?ar)
(?city :populationDensity ?pd)
product(?ar, ?pd, ?p)
noValue (?city, :populationDensity)
-> (?city :population ?p)

Jena rules with ARQ gives no results

‣ n rules for an equation in n variables

‣ Forward chaining implementation

‣ No query returned any result within 10 minutes

‣ Even for reduced dataset

27

Rewriting is signi"cantly faster than
Jena rules with noValue

Query 1

Query 2

Query 3

Query 4

0 10 20 30 40

Jena rules with noValue
SPARQL query rewriting

Query response time in seconds

28

Conclusions

‣ Reasoning about equations on numerical properties
is important and feasible
lots of numeric open data available

‣ Rule engines are not well suited for such attribute equations
especially on real world data

‣ Query rewriting enables such reasoning
on top of off-the-shelf SPARQL engines
also possible on public SPARQL endpoints

‣ Query rewriting can be signi"cantly faster
than forward chaining rule engines

29

