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Use equations to infer missing numbers
What is the population density of Montpellier?

‣ Montpellier
population: 252 998
area:  56 880 000 m2

population density: ??? in people/km2

‣ Can we infer population density from given data?
computations not supported by Semantic Web reasoners

‣ How can we get area in km2?
unit conversion by computation
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What is the population density of Montpellier?
written in SPARQL
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SELECT ?dens 
WHERE { :Montpellier :populationDensity ?dens .}

SELECT ?city ?dens 
WHERE { 
  :Montpellier :populationDensity ?mdens .
  ?city rdf:type :City ;
        :populationDensity ?dens .
  FILTER(?dens > ?mdens)
}
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We need RDFS for integrating different sources

‣ Unify RDFS properties of different data sources

‣ Use uni"ed name for population

‣ Use already implemented RDFS reasoners
which allow SPARQL queries
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dbp:populationTotal rdfs:subpropertyOf :population
geo:population rdfs:subpropertyOf :population
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Syntax RDFS and equations
converting between RDFS and DLRDFSE

A1 v A2 A1 rdfs :subClassOf A2

9P v A P rdfs :domain A

9P� v A P rdfs : range A

9U v A U rdfs :domain A

P1 v P2 P1 rdfs :subPropertyOf P2

U1 v U2 U1 rdfs :subPropertyOf U2

U0 = f(U1, . . . , Un) U0 definedByEquation“f(U1, . . . ,Un)
00

A(x) x rdf : type A

R(x, y) x R y

U(x, q) x U ”q” ˆ̂ owl : rational
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   dbp:population rdfs:domain dbp:populatedPlace.

geonames:population rdfs:subPropertyOf dbp:population  .

dbp:populationDensity  :definedByEquation 
“dbp:population / dbp:area” .

:Montpellier dbp:population  252998  .



Extend the DLRDFS Semantics by equations

‣ RDFS + attributes: usual DL model theoretic semantics

‣ For an equation, infer a new value
if all other attributes of the equation are given and
there is no division by zero
then the computation result is the new attribute value

‣                                           satis"ed in

‣ Query answers are not necessarily "nite
ABoxes inconsistent with equations

10

U0 = f(U1, . . . , Un)

if 8x, y1, . . . , yn(
n̂

i=1

(x, yi) 2 U

I
i ) ^ defined(f(U1/y1, . . . , Un/yn)

) (x, eval(f(U1/y1, . . . , Un/yn)) 2 U

I
0

I
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dbp:populationDensity  :definedByEquation 
“dbp:population / dbp:area” .

:Montpellier dbp:population  252998  .
:Montpellier dbp:area  56.88  .

:Montpellier dbp:populationDensity  4447.93 .



Formulate equations as rules
n rules for equations in n variables

‣ Equation given for population density

‣ Formulate equation as rule 

‣ More rules needed to cover all directions
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areakm2 (X,A) ( popDensity(X,PD), population(X,P ), A = P ÷ PD .

areakm2 =
population

popDensity

popDensity(X,PD) ( population(X,P ), areakm2 (X,A),PD = P ÷A.

population(X,P ) ( areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .



‣ DBpedia: population 252 998, area 56.88 km2

‣ Apply rule: population density 4447.925...293

‣ Apply rules: population 252 997.999...999 and area 56.880...003

‣ Rules engine computes population density again: 4447.925...275

Forward chaining often does not terminate
because of rounding errors
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popDensity(X,PD) ( population(X,P ), areakm2 (X,A),PD = P ÷A.

areakm2 (X,A) ( population(X,P ), popDensity(X,PD), A = P ÷ PD .

population(X,P ) ( areakm2 (X,A), popDensity(X,PD), P = A⇥ PD .



Naive backward chaining does not terminate
unfolding of recursive rules blows up arbitrarily

‣ To compute the population density query for population density
makes no sense

13
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Rules are problematic for applying equations
break the in!nite series of rule applications

‣ Need to specify all directions of the equation
not as intuitive and short as equations

‣ Forward chaining often does not terminate
division or multiplication is often enough for non-termination
implementation dependent

‣ Backward chaining does not terminate
unfolding of recursive rules can blow up arbitrarily
even for a single equation no termination

‣ We have to break the in"nite series of rule applications

14
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Query answering in DL-Lite: PerfectRef 
Encode TBox in the query [Calvanese et al., 2009]

conj. query q

TBox T

ABox A

PerfectRef
Query q’

Query
evaluation

Answer query q over ontology (T,A)

certain answers

16
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Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity =
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aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensity

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensity

areakm2 population

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensity

areakm2 population

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

areakm2 population

popDensity =
population

areakm2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

areakm2 population

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity areakm2

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity areakm2

popDensity

areakm2 population

aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity areakm2

popDensity

areakm2 population

areamile2aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity popDensityareakm2

popDensity

areakm2 population

areamile2aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Break the in"nite series of equation applications
Adorn attributes by used attributes

18

popDensitypopDensity

popDensity popDensityareakm2 areakm2

popDensity

areakm2 population

areamile2aream2

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000 areamile2 = areakm2 ⇥ 2.590

popDensity =
population

areakm2

aream2 = areakm2 ⇥ 1 000 000

areamile2 = areakm2 ⇥ 2.590



Extend the DL-Lite PerfectRef algorithm
by equations and adorned attributes

19

8 Stefan Bischof and Axel Polleres

Note that here we slightly abused notation using ans(qP , K) synonymous for what
would be more precisely “the set of SPARQL variable mappings corresponding to
ans(qP , K)”. As for the semantics of more complex patterns, we refer the reader to
[16, 19] for details, except for the semantics of BIND which is newly introduced in
SPARQL 1.1 [10], which we define as:

JP BIND (Expr AS v)KG = {µ fi {v æ eval(µ(Expr))} | µ œ JP KG}

Here, by eval(µ(Expr)) we denote the actual value in Q from evaluating the arithmetic
expression Expr after applying the substitutions from µ.

3.1 Adapting PerfectRef to DLE
RDFS

Next, we extend the PerfectRef algorithm [3] which reformulates a conjunctive query
to directly encode needed TBox assertions in the query. The algorithm PerfectRefE
in Algorithm 1 extends the original PerfectRef by equation axioms and conjunctive

Algorithm 1: Rewriting algorithm PerfectRefE
Input: Conjunctive query q, TBox T
Output: Union (set) of conjunctive queries

1 P := {q}
2 repeat
3 P

Õ
:= P

4 foreach q œ P

Õ do
5 foreach g in q do // expansion
6 foreach inclusion axiom I in T do
7 if I is applicable to g then
8 P := P fi

)
q[g/ gr(g, I)]

*

9 foreach equation axiom E in T do
10 if g = U

adn(g)
(x, y) is an (adorned) attribute atom, U œ vars(E) and

vars(E) fl adn(g) = ÿ then
11 P := P fi

)
q[g/ expand(g, E)]

*

12 until P

Õ
= P

13 return P

Table 2. Semantics of gr(g, I) of Algorithm 1

g I gr(g/I)

A(x) B ı A B(x)

÷P ı A P (x, _)

÷P

≠ ı A P (_, x)

÷U ı A U(x, _)

P1(x, y) P2 ı P1 P2(x, y)

U

adn(g)
1 (x, y) U2 ı U1 U

adn(g)
2 (x, y)

Preliminary version – May 24, 2013



‣ Equations

‣ Original query

‣ Step 1: Expand popDens by E1

‣ Step 2: Expand area by E2

PerfectRef with adorned attributes
query rewriting

20

popDens(montpellier,X)

E1: popDens =
population

areakm2
E2: aream2 = areakm2⇥ 1 000 000

population

{popDens}(montpellier, P ),

aream2{popDens,area}(montpellier, A1), A = A1 ⇤ 1000000, X = P/A

population

{popDens}(montpellier, P ),

areakm2{popDens}(montpellier, A), X = P/A
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popDens(montpellier,X)

E1: popDens =
population

areakm2
E2: aream2 = areakm2⇥ 1 000 000

population
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PerfectRefE is sound but incomplete in general
conditions for completeness 

‣ ABox is data-coherent with the TBox
model of each object has at most one value per attribute
attribute inclusions must also be considered

‣ For data-coherent ABoxes wrt. the TBox and 
rewritten SPARQL queries (free of non-distinguished variables) 
PerfectRefE is sound and complete

21
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:M dbp:area_km2  1  .
:M dbp:area_mi2   2.590  .

:M dbp:area_km2  1  .
:M dbp:area_mi2   2.6  .
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Rewrite SPARQL queries by PerfectRef

‣ SPARQL basic graph patterns (BGPs) 
the fundamental building block for graph pattern matching

‣ BGPs can be expressed by conjunctive queries [Perez et al., 2009]
 no variables as predicates   :Montpellier ?prop “Montpellier”
no variables for classes   :Montpellier rdf:type ?class

‣ Convert BGPs to CQs, rewrite CQs to UCQs, convert UCQs to SPARQL

‣ SPARQL translator
rewrite each BGP independently by PerfectRefE

‣ Variable assignments are rewritten to SPARQL 1.1 BIND

23



‣ CQ 1:

‣ CQ 2:

‣ CQ 3:

SELECT ?X WHERE { 
  { :Montpellier dbo:populationDensity ?X . }
  UNION
  { :Montpellier dbo:populationTotal ?p ; dbp:areaTotalKm ?a .
    BIND (?p/?a as ?X) }
  UNION
  { :Montpellier dbo:populationTotal ?p ; dbo:area ?a2 .
    BIND (?a2/1000000 as ?a) BIND (?p/?a as ?X) }
}

Rewrite SPARQL query by PerfectRef
rewritten SPARQL query

24

popDens(montpellier,X)

population

{popDens}(montpellier, P ),

area

{popDens}(montpellier, A), X = P/A

population

{popDens}(montpellier, P ), A = A1 ⇤ 1000000,
aream2{popDens,area}(montpellier, A1), X = P/A



‣ CQ 1:

‣ CQ 2:

‣ CQ 3:

SELECT ?X WHERE { 
  { :Montpellier dbo:populationDensity ?X . }
  UNION
  { :Montpellier dbo:populationTotal ?p ; dbp:areaTotalKm ?a .
    BIND (?p/?a as ?X) }
  UNION
  { :Montpellier dbo:populationTotal ?p ; dbo:area ?a2 .
    BIND (?a2/1000000 as ?a) BIND (?p/?a as ?X) }
}

Rewrite SPARQL query by PerfectRef
rewritten SPARQL query
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popDens(montpellier,X)

population
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RDFS with Attribute Equations via SPARQL Rewriting
the big picture
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How does the rewriting algorithm perform on 
real world data?

‣ Collected data about cities
from several sources (e.g., DBpedia, Eurostat)
254 081 triples for 3161 city contexts
inconsistent and consistent dataset

‣ 6 equations, 2 subProperties and 1 subClass axioms

‣ 4 different queries

‣ 3 implementations
Jena forward rules with ARQ
Jena forward rules with ARQ with noValue
Rewriting with ARQ

26
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from several sources (e.g., DBpedia, Eurostat)
254 081 triples for 3161 city contexts
inconsistent and consistent dataset

‣ 6 equations, 2 subProperties and 1 subClass axioms

‣ 4 different queries

‣ 3 implementations
Jena forward rules with ARQ
Jena forward rules with ARQ with noValue
Rewriting with ARQ
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(?city :area ?ar) 
(?city :populationDensity ?pd)
product(?ar, ?pd, ?p) 
noValue (?city, :populationDensity)
-> (?city :population ?p)



Jena rules with ARQ gives no results

‣ n rules for an equation in n variables

‣ Forward chaining implementation

‣ No query returned any result within 10 minutes

‣ Even for reduced dataset
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Rewriting is signi"cantly faster than 
Jena rules with noValue

Query 1

Query 2

Query 3

Query 4

0 10 20 30 40

Jena rules with noValue
SPARQL query rewriting

Query response time in seconds
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Conclusions

‣ Reasoning about equations on numerical properties 
is important and feasible
lots of numeric open data available

‣ Rule engines are not well suited for such attribute equations
especially on real world data

‣ Query rewriting enables such reasoning 
on top of off-the-shelf SPARQL engines
also possible on public SPARQL endpoints

‣ Query rewriting can be signi"cantly faster 
than forward chaining rule engines
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